é’ usenix EVALUATED | | EVALUATED | | EVALUATED

yusenix Y nix yusenix
’ zg;:g:lANNGCSESTEMS p wssocon 'y rssocion p Rssodution

ASSOCIATION

AVAILABLE REPRODUCED

ShadowBound: Efficient Heap Memory Protection
Through Advanced Metadata Management and
Customized Compiler Optimization

Zheng Yu

09/25/2024

=2 Northwestern
<& University

Agenda

Background: Heap Memory Errors and Defenses
- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

£ % Northwestern
&% University

Agenda

Background: Heap Memory Errors and Defenses
- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

2 Northwestern
7 University

Heap Memory Errors

- C/C++inherently lack heap memory safety mechanisms.
- 2023 CWE top-most dangerous software weaknesses.
- Exploiting these vulnerabilities even can lead to privilege escalation.

Out-of-bounds Write
CWE-787 | CVEs in KEV: 70 | Rank Last Year: 1

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CWE-79 | CVEs in KEV: 4 | Rank Last Year: 2

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
CWE-89 | CVEs in KEV: 6 | Rank Last Year: 3

Use After Free
CWE-416 | CVEs in KEV: 44 | Rank Last Year: 7 (up 3) A

Northwestern
University

Temporal Memory Errors

- Occurs when a program accesses memory
that has already been freed or is no longer
valid. (Use After Free, Double Free etc)

void main() {
char *buf = malloc(16);
free (buf);
buf (0] = 'y"';

2 Northwestern
7 University

Temporal Memory Errors

Occurs when a program accesses memory
that has already been freed or is no longer
valid. (Use After Free, Double Free etc)

Method] Conference ’ Overhead

Many prior works have focused on MarkUs S&P 20 10.01%
) . FFMalloc | Security 21 2.30%
developing defenses against temporal PUMM | Security 23 2 04%

memory vulnerabilities, with several
notable for their low overhead.

Spatial Memory Errors

- Spatial memory errors occur when a
program accesses memory outside the
allocated bounds.

- While there also many defenses against
spatial memory errors have been
proposed, most of them suffer from
performance, compatibility or security
issues.

void main () {
char *buf
buf[32] =

1

X

malloc (16)

LS
4

/

Northwestern
&/ University

Spatlal Memory Defense performance Issue

- X>50%: SoftBound (PLDI109) / ASAN (ATC 12) / LowFat (CCS 16) /
ESAN (PLDI 18)/ SanRazor (OSDI 21) / ASAN-- (USENIX Security 22)

- XX> 30%: SGXBound (EuroSys 17) / DeltaPointer (EuroSys 18) /
PACMem (CCS 22) / TailCheck (OSDI 23)

Northwestern
University

Spatial Memory Defense compatibility Issue

- X Compatibility with UAF defense: Since SOTA UAF defenses
introduce custom allocators, OOB defenses that also implement
their own allocators may face challenges in integrating with UAF

defenses. (LowFat / ESAN / TailCheck)

- X Compatibility in Large-scale Program: Some defenses reduce
the available memory space to a very limited range (4GB), making
them difficult to deploy them in large-scale programs. (SGXBound /
DeltaPointer)

Northwestern
>/ University

ERN
SR
S\i‘-\o” .\,q;v,/;‘
FEE=s R
{J85)

Spatial Memory Defense security issue

- X Bypassed by Non-linear Overflow: Some tools are inherently
designed for detection or debugging and are not suitable for spatial
memory defense, as they can be bypassed by non-linear overflows.
(ASAN, SanRazor, ASAN--TailCheck)

- X Bypassed by Underflow: Some defenses forego underflow
checks to minimize performance overhead. (TailCheck / DeltaPointer)

Northwestern
University

ERN
S
A "%:'{,_
=5 2
© 55
P\~
(J85h S

ShadowBound

- Low performance overhead, approximately 6%.

- Works seamlessly with UAF defenses, scalable to large programs.

- Provide robust spatial memory security.

£ % Northwestern
=¥ University

Agenda

Background: Heap Memory Errors and Defenses
- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

Threat Model

l

Northwgstern
University

Allocated

Free

Allocated

2 Northwestern
7 University

Threat Model
Vo |

Allocated Free Allocated ll Invalid Region !

- Inaccessible: If the system has removed permission to access the
associated address, the OOB wiill result in a crash.

Northwestern
University

Threat Model
l L

Allocated Free Allocated ll Invalid Region !

Requested Size

<—— Allocated Size ———

- Accessible & No Overlap: The address remains accessible but still
falls within the original heap chunk, without overlapping with other
heap chunks or the freed regions.

Threat Model

l

l

Northwestern
University

Allocated

Free

Allocated

Requested Size

<«—— Allocated Size —

Accessible & Overlap: The memory remains accessible, and the
associated address may overlap with another region.

Threat Model

ShadowBound can be deployed either in conjunction with other UAF
defense mechanisms or independently. When deployed alongside
other UAF defenses, it is presumed that the target program
contains one or more heap out-of-bounds and use-after-free
vulnerabilities. If ShadowBound is used independently, the
assumption is limited to the presence of heap out-of-bounds
vulnerabilities. In this threat model, an attacker can only attempt to
exploit these vulnerabilities to potentially escalate privileges. Our
goal is to prevent these vulnerabilities to being exploitable.

£ % Northwestern
=¥ University

Agenda

Background: Heap Memory Errors and Defenses
- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

4> Northwestern
=% University

Checking Position insert Boundary Checking at Pointer Arithmetic

void foo(void *ptr, int n) {
bound_check (ptr, ptr + sizeof(int));
int *arr = (AnE *) ptr;

for (int i = 0; i < n; ++i) { bitcast i8* %0 to i32%
bound_check (arr, arr + i + 1);
other_function(&arr[i]);

getelementptr i32, i32* %5, i64 %11

) Northwestern
University

Checking Position insert Boundary Checking at Pointer Arithmetic

void foo(void *ptr, int n) {
bound_check (ptr, ptr + sizeof(int));
iant *arr = (ank *) ptr;

for (int i = 0; i < n; ++i) { bitcast i8* %0 to i32*

bound_check (arr, arr + i + 1);
other_function(&arr[i]);

getelementptr 132, i32* %5, 164 %11

Ensure the base pointer and result pointer belong to same object

Northwestern

Metadata Design How we store each pointer’s boundary?

Heap |Allocated| Free Allocated Allocated

beg pos pos+8 end
Shadow T

1. Heap memory size are equal to shadow memory size.
2. Each aligned 8 bytes heap memory are mapped into 8 bytes
shadow memory.

Metadata Design How we store each pointer’s boundary?

Heap |Allocated| Free Allocated Allocated
beg pos pos+8 end
Shadow
Metadata (pos - beg) / 8 (end - pos) / 8

Why 64 bits is enough to save two size_t variables?
1. All mainstream allocators default to 8-byte or 16-byte aligned allocations.
2. The maximum single-time allocation size is limited to 8 GB (2”33 bits).

Northwestern
University

Boundary Checking

l l

void bound_check (uint64_t uint64_t[res) { Heap |Allocated| Free Allocated Allocated
if (!IsHeapAddress(old)) return;
uint64_t align = old & ~7;

uint64_t shadow = align + OFFSET; Shadow
uint64_t pack = *(uint64_t*) shadow;
uint64_t beg = align - ((pack & Oxffffffff) << 3)

uint64_t end align + ((pack >> 32) << 3);
if (res < beg || res >= end)

error ("Heap out-of-bounds Detected");
} Metadata (pos - beg) / 8 (end - pos) / 8

Northwestern
University

Boundary Checking

¥ l

void bound_check (uint64_t jold,; uint64_t[res) { Heap |Allocated | Free Allocated Allocated
if (!IsHeapAddress(old)) return;
uint64_t [align]= old & ~7;
uint64_t shadow = align + OFFSET; Shadow
uint64_t pack = *(uint64_t*) shadow;
uint64_t beg = align - ((pack & Oxffffffff) << 3);
uint64_t end = align + ((pack >> 32) << 3);
if (res < beg || res >= end)

error ("Heap out-of-bounds Detected");
} Metadata (pos - beg) / 8 (end - pos) / 8

Northwestern
University

Boundary Checking

i l

void bound_check (uint64_t old, uint64_t| res)| { Heap |Allocated| Free Allocated Allocated
if (!IsHeapAddress(old)) return;
uint64_t @lignl= old & ~7; l
uint64_t = align + OFFSET; Shadow
uint64_t pack = *(uint64_t*) shadow;
uint64_t beg = align - ((pack & Oxffffffff) << 3);
uint64_t end = align + ((pack >> 32) << 3);
if (res < beg || res >= end)

error ("Heap out-of-bounds Detected");
} Metadata (pos - beg) / 8 (end - pos) / 8

Northwestern
University

Boundary Checking

l

void bound_check (uint64_t old, uint64_t| res)| { Heap |Allocated | Free Allocated Allocated
if (!IsHeapAddress(old)) return; !
uint64_t align = old & ~7; ‘ v
uint64_t shadow = align + OFFSET; Shadow
uint64_t *(uint64_t*) shadow;
uint64_t beg = align - ((pack & Oxffffffff) << 3);
uint64_t end = align + ((pack >> 32) << 3);
if (res < beg || res >= end)

error ("Heap out-of-bounds Detected");
} Metadata (pos - beg) / 8 (end - pos) / 8

pack

Northwestern
University

Boundary Checking

l

void bound_check (uint64_t old, uint64_t| res)| { Heap |Allocated | Free Allocated Allocated
if (!IsHeapAddress(old)) return;
uint64_t align = old & ~7;

uint64_t shadow = align + OFFSET; Shadow
uint64_t *(uint64_t*) shadow;
uint64_t [beg|= align - ((pack & Oxffffffff) << 3);
uint64_t end = align + ((pack >> 32) << 3);
if (res < beg || res >= end))
error ("Heap out-of-bounds Detected");
} Metadata (pos - beg) / 8 (end - pos) / 8

pack

£ % Northwestern
=¥ University

Agenda

Background: Heap Memory Errors and Defenses
- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

Compiler Optimization

- Runtime-Driven Checking Elimination
- Directional Boundary Checking

- Merge Metadata Extraction

- Security Pattern Identification

- Redundant Checking Elimination

Compiler Optimization

- Runtime-Driven Checking Elimination

- Directional Boundary Checking

- Merge Metadata Extraction

- Security Pattern Identification - DataGuard (NDSS 22)

- Redundant Checking Elimination - PACMem (USENIX Security 23)

Compiler Optimization

- Runtime-Driven Checking Elimination

Northwestern
=% University

Compiler Optimization runtime-Driven Checking Elimination

- If each heap chunk has infinite space, out-of-bounds access becomes impossible,
rendering all boundary checks redundant and eliminable. However, It’s
impractical to allocate infinite or even very large spaces for every chunk due to
the potential for high memory overhead.

- ShadowBound chooses an improved approach to balance time overhead and
memory overhead. Specifically, ShadowBound reserves a fixed n bytes for every
heap chunk, denoted as reserved space. Then, ShadowBound will try to find all
eliminable boundary checks using the reserved space provided by the runtime.

=2 Northwestern

Compiler Optimization runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if void bar (char *c) {

. glU] = Taa¥;
- The offset between the result pointer and base c[l] = "y';
pointer can be confirmed to be less than n bytes c[2] = 'z';

at compile time. escape(c + 1);

- Theresult pointer will never be used as a base
pointer in another boundary checking.

- Northwestern
7 University

Compiler Optimization runtime-Driven Checking Elimination

void bar (char|*c] {

ShadowBound can remove the boundary checking if bound_check (¢, &c[0]);
e8] = "xty

- The offset between the result pointer and base bound_check (¢, &c[1]);
pointer can be confirmed to be less than n bytes elll = "¥7

bound_check(c, &c[2]);
at compile time. c[2] = 'z';
bound_check(c, ¢ + 1);
escape(c + 1);

- Theresult pointer will never be used as a base
pointer in another boundary checking. AMlaeed Free

4= Northwestern
=% University

Compiler Optimization runtime-Driven Checking Elimination

void bar (char|*c] {

ShadowBound can remove the boundary checking if bound_check (¢, &c[0]);
c[0] = 'x';

- The offset between the result pointer and base bound_check (¢, &c[1]);
pointer can be confirmed to be less than n bytes elll = "¥7

]) bound_check (¢, &c[2]);
at compile time. &[2] = %gh%

bound_check(c, c + 1);
escape(c + 1);

- Theresult pointer will never be used as a base

pointer in another boundary checking. Allocated Sbvtes Free
5 Reserved

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base
pointer can be confirmed to be less than n bytes
at compile time.

- Theresult pointer will never be used as a base
pointer in another boundary checking.

void bar (char *c) |

> Northwestern
=% University

Compiler Optimization runtime-Driven Checking Elimination

glil = *
ell] ="
Gzl = =
bound: ‘checki(e, o+ 1);
escape(c + 1);
8-bytes

Allocated

Reserved

Free

> Northwestern
University

Compiler Optimization runtime-Driven Checking Elimination

void bar (char *c) {

ShadowBound can remove the boundary checking if c[0] = 'x';
@ll] = "9ty
- The offset between the result pointer and base cl2] = 'z';

pointer can be confirmed to be less than n bytes bou“d—cc' ot

escape (c +) ; . .
. . ! pointer c + 1 is passed to
at Complle time. } another function, indicating

that it may beused as a
base pointer for boundary

checking
- Theresult pointer will never be used as a base 5
pointer in another boundary checking. Allocated | obvtes Free
5 Reserved

Compiler Optimization

- Directional Boundary Checking

> Northwestern
University

Compiler Optimization pirectional Boundary Checking

- Boundary checking consists of two

parts: an underflow check and an void bar (struct obj *o) {
for (int 1 = 0; 1 < o—>len; ++1i) {
overflow check. uint64_t lbound = ...;
- By determining the sign (positive or u';nt64_t rbounilb= .a.; - 1
. i o—>a + i < oun rbound <= o->a + i +
negative) of the offset between the (error ("Heap Out_of_'blound P EREEET)..)
base pointer and the result pointer, other_function (s0->a[i])

we can optimize the process by }
inserting only the necessary check
for one side.

> Northwestern
University

Compiler Optimization pirectional Boundary Checking

Boundary checking consists of two
parts: an underflow check and an
overflow check.

By determining the sign (positive or
negative) of the offset between the
base pointer and the result pointer,
we can optimize the process by
inserting only the necessary check
for one side.

void bar(struct obj *o) {

(int 1 = 0; 1 < o->len; ++i) {
uint64_t lbound = ...;
uint64_t rbound = ...;
if (rbound <= o->a + i + 1)

error ("Heap out-of-bound detected");
other function (&o->a[i])

Compiler Optimization pirectional Boundary Checking

Boundary checking consists of two
parts: an underflow check and an
overflow check.

By determining the sign (positive or
negative) of the offset between the
base pointer and the result pointer,
we can optimize the process by
inserting only the necessary check
for one side.

void bar(struct obj *o) {
for (int i = 0; 1 < o->len; ++i) {
uint64_t lbound = ...;
uint64_t rbound = ...;
if (rbound <= o->a + i + 1)
error ("Heap out-of-bound detected");
other function (&o->a[i])
} \
) Hard to get the properties of Compiler can consistently utilize the
the pointer from within the computing process information
callee function.

Compiler Optimization

- Merge Metadata Extraction

Northwestern
University

Compiler Optimization Merge Metadata Extraction

- Boundary checking contain two stage: void ;00 (char *p) 1{
*q = + 1;
- The extraction stage to obtain the base zh::: *2 _ i v o2
pointer's boundary. char *c, *d;
- Followed by a subsequent checking stage £ (cra:d:mf’}) O
to validate the result pointer. affeen '
- Theextraction stage is only determined by the c=Db+4;

base pointer, which provide the opportunity to for (d =c; d < p + 100; d++)
merge them for different result pointer. *d = "x';

Northwestern
University

Agenda

- Evaluation and Results

Northwestern
University

Security Evaluation real world vulnerabilities

- Safeguard 19 programs against 34 exploitable out-of-bound bugs.

CVE/Issue ID Link Program Prevention Type Source CVE/Issue ID Program Result
CVE-2021-32281 [10] gravity v OOB Detected CVE-2015-9101 lame vOD
CVE-2021-26259 [8] htmldoc ¢ OOB Detected CVE-2016-10270 libtiff vBR
CVE-2020-21595 [6] libde265 ¢ OOB Detected SANRAzor CVE-2016-10271 libtiff vOD
CVE-2020-21598 [7] libde265 ¢ OOB Detected CVE-2017-7263 potrace ¢/OD
CVE-2018-20330 [1] libjpeg-turbo ¢ OOB Detected 381331213122 :ﬁtgﬁ:ﬁ: 583
CVE-2021-4214 [11] libpng v/ OOB Detected

CVE-2020-19131 [4] libtiff v OOB Detected CVE-2006-6563 proftpd vOD
CVE-2020-19144 [5] libtiff v OOB Detected CVE-2009-2285 libtiff vOD
CVE-2022-0891 [13] libtiff ¢ OOB Detected ASAN—— CVE-2013-4243 libtiff v oD
CVE-2022-0924 [14] libtiff ¢ OOB Detected CVE-2014-1012. pythen wOD
CVE-2020-15888 [3] Lua v OOB Detected CNEZDL>BO0R Irift vOD
CVE-2022-0080 [12] mruby v Benign Running CVE-2016-1762 libxml vBR
Issue-5551 [29] mruby v Transformation CVE-2016-1838 libxml vBR
CVE-2019-9021 [2] php v OOB Detected Macma CVE-2019-10872 poppler vOD
CVE-2022-31627 [16] php ¢ OOB Detected CVE-2019-9200 poppler vOD
CVE-2021-3156 [9] sudo ¢ Benign Running CVE-2019-7310 poppler ~ vOD
CVE-2022-28966 [15] wasm3 v 0OB Detected CVEAI4E. Bdis VoD

Table 2: Heap out-of-bounds Prevention Results for SHAD- Table 7: Security evaluation for SHADOWBOUND on vulnabil-

OWBOUND on Real-World Vulnabilities. ities from prior works.

» Northwestern
7 University

Security Evaluation Synthesis Vulnerabilities

- we undertook synthesis vulnerability testing, generating 244 inputs to trigger
out-of-bounds bugs in various ways.

Program #Input #OD #BR #TF

cxxflit | 1 0 0
libpcap -4 2 2 0
libxml2_reader 127 1277 0 0
libxml2_xml 61 46 15 0
proj4 3 0 3 0

zstd 48 45 3 0
Total 244 221 23 0

Table 3: Heap out-of-bounds Prevention Results for SHAD-
OWBOUND on Synthesis Vulnerabilities.

Performance Evaluation speccru2017

- On SPEC CPU 2017, the geomean time overhead of each system is 5.72%,
6.60%, 9.95%, 16.20%, 62.03%, 79.85% and 138.76%.

4x- 7.93x 4.32x
3x-
[
E 2x-
=
o i d 1 i 1 i . i
perlbench ce mef omn'etpp xalancbmk X264 deep'sjeng leela
ax- 12.10x 7.02x 13.23x
3x-
o
E 2x-
=
l.l 1 ll.l. lilﬂ
parest povray blender imagick

I ShadowBound [ShadowBound + PUMM ShadowBound + FFmalloc @ ShadowBound + MarkUs I AddressSanitizer I ASAN-- Il EffectiveSan

~ > Northwestern
7 University

Performance Evaluation speccru2017

- On SPEC CPU 2017, the geomean memory overhead of each system is
54.59%, 95.29%, 218.20%, 302.51%, 116.55%, 112.33%, 2.70%

8x -

9.96x 112. 56x 44.69x 38.94x
S, 6x-
S
£ 4x-
s
pcrlbcnch omnetpp xalancbmk x264 deepsjeng leela

8x1 10.56x 9.66x
o, 6x-
g
£ 4x
s

" h i I ‘ 1 l l b

n I h
namd parest povray Ibm blender lmaglck

I ShadowBound [ShadowBound + PUMM ShadowBound + FFmalloc @ ShadowBound + MarkUs I AddressSanitizer I ASAN-- Il EffectiveSan

Northwestern
University

Performance Evaluation Rrealiworld Application

- We assessed using Nginx, Chakra, and Chromium. It introduces negligible
overhead to the tested real-world programs.

40.00% -
System Onitgpt Lataacy (i) ShadowBound Website Native SHADOWBOUND Overhead
(req/s) Average 50% 75% 90% 99% mm - ShadowBound + PUMM
30.00% - | BN ShadowBound + FFmalloc www.google.com 1202 1237 2.93%
NATIVE 158847 611 592 604 623 748 — s e gy www.facebook.com 932 950 2.01%
SHADOWBOUND 147,550 650 640 649 668 767 www.amazon.com 2399 2444 1.87%
SB+MarkUs 124,361 777 759 770 803 890 20.00% 1 www.openai.com 1544 1577 2.16%
SB + FFMalloc 110,406 870 860 880 900 1000 www.twitter.com 1580 1634 3.45%
SB + PUMM 79,229 1220 1200 1220 1270 1460 10.00% - www.gmail.com 1791 1822 1.75%
www.youtube.com 2244 2374 5.79%
Table 4: Evaluation Results of Native, SHADOWBOUND and 0.00% - I ! I ! www.wikipedia.org 1085 1133 4.42%
its variants: Output and Latency Analysis on Nginx. In the jetstream Kraken Octane SunSpider www.netflix.com 1415 1448 2.36%
Latency column, Average denotes the average latency of the
? H . i ' Geomean - - 2.74%
requested connections, while the remaining values depict la- Figure 4: Runtime overhead comparison of SHADOWBOUND 2
tency distribution. and its variants on the Chakra engine: The geometric mean Benchmark ~ Octane Kraken SunSpider Geomean
overhead for each system is 4.17%, 7.28%, 7.86%, 13.28%. SHADOWBOUND 3.60% 3.30% 5.50% 4.03%

Table 5: Runtime overhead on Chromium: website loading
times and JavaScript benchmarks.

Northwestern
University

Ablation Study

- The bars show the time overhead of ShadowBound with full optimization, ShadowBound with each
optimization disabled, and ShadowBound without optimization. The geomean value is 5.72%, 9.51%,
11.56%, 11.76% 12.86%, 29.28% and 99.69%

127.94%

120.00%- 183.33% 140.39% 234.10%
100.00% -

80.00% -

60.00% -

40.00% -

20.00% - I

-—
mC

perlbench omnetpp xalancbmk deepSJeng leela
120.00%- 211.76% 367.25% 174.00% 136.55%
100.00% -
80.00% -
60.00% -
40.00% -
20.00% - '
. . -
namd parest povray blender 1mag1ck

N full-opt I no-pattern no-merge B no-rdt-elim BN no-dir I no-rt-clim I no-opt

Northwestern
University

Takeaways

- Efficient Protection: ShadowBound uses a novel metadata design to quickly fetch pointer
boundaries, ensuring compatibility with various Use-After-Free defenses and providing minimal
overhead.

- Optimized Performance: ShadowBound implements custom optimization techniques for

boundary checking, significantly reducing time overhead.

- Proven Effectiveness: Evaluations show ShadowBound consistently provides robust memory
protection with minimal overhead in benchmarks and real-world applications.

Zheng Yu (@dataisland929)

https://dataisland.org

zhengyu@northwestern.edu

https://x.com/dataisland99
https://dataisland.org

