
ShadowBound: Efficient Heap Memory Protection

Through Advanced Metadata Management and

Customized Compiler Optimization

Zheng Yu
09/25/2024

Agenda

- Background: Heap Memory Errors and Defenses

- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

Agenda

- Background: Heap Memory Errors and Defenses

- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

Heap Memory Errors

- C/C++ inherently lack heap memory safety mechanisms.

- 2023 CWE top-most dangerous software weaknesses.

- Exploiting these vulnerabilities even can lead to privilege escalation.

Temporal Memory Errors

- Occurs when a program accesses memory
that has already been freed or is no longer
valid. (Use After Free, Double Free etc)

- Many prior works have focused on

developing defenses against temporal

memory vulnerabilities, with several

notable for their low overhead.

Temporal Memory Errors

- Occurs when a program accesses memory
that has already been freed or is no longer
valid. (Use After Free, Double Free etc)

- Many prior works have focused on

developing defenses against temporal

memory vulnerabilities, with several

notable for their low overhead.

Spatial Memory Errors

- Spatial memory errors occur when a

program accesses memory outside the

allocated bounds.

- While there also many defenses against

spatial memory errors have been

proposed, most of them suffer from

performance, compatibility or security

issues.

Spatial Memory Defense

- ❌> 50%: SoftBound (PLDI 09) / ASAN (ATC 12) / LowFat (CCS 16) /
ESAN (PLDI 18) / SanRazor (OSDI 21) / ASAN–– (USENIX Security 22)

- ❌> 30%: SGXBound (EuroSys 17) / DeltaPointer (EuroSys 18) /
PACMem (CCS 22) / TailCheck (OSDI 23)

Performance Issue

Spatial Memory Defense

- ❌ Compatibility with UAF defense: Since SOTA UAF defenses
introduce custom allocators, OOB defenses that also implement
their own allocators may face challenges in integrating with UAF
defenses. (LowFat / ESAN / TailCheck)

- ❌ Compatibility in Large-scale Program: Some defenses reduce
the available memory space to a very limited range (4GB), making
them difficult to deploy them in large-scale programs. (SGXBound /
DeltaPointer)

Compatibility Issue

Spatial Memory Defense

- ❌ Bypassed by Non-linear Overflow: Some tools are inherently
designed for detection or debugging and are not suitable for spatial
memory defense, as they can be bypassed by non-linear overflows.
(ASAN, SanRazor, ASAN––,TailCheck)

- ❌ Bypassed by Underflow: Some defenses forego underflow
checks to minimize performance overhead. (TailCheck / DeltaPointer)

Security Issue

ShadowBound

- ✅ Low performance overhead, approximately 6%.

- ✅ Works seamlessly with UAF defenses, scalable to large programs.

- ✅ Provide robust spatial memory security.

Agenda

- Background: Heap Memory Errors and Defenses

- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

Threat Model

- Inaccessible: If the system has removed permission to access the
associated address, the OOB will result in a crash.

- Accessible & No Overlap: The address remains accessible but still
falls within the original heap chunk, without overlapping with other
heap chunks or the freed regions.

- Accessible & Overlap: The memory remains accessible, and the
associated address may overlap with another region.

FreeAllocated Allocated Invalid Region

Threat Model

- Inaccessible: If the system has removed permission to access the
associated address, the OOB will result in a crash.

- Accessible & No Overlap: The address remains accessible but still
falls within the original heap chunk, without overlapping with other
heap chunks or the freed regions.

- Accessible & Overlap: The memory remains accessible, and the
associated address may overlap with another region.

FreeAllocated Allocated Invalid Region

Threat Model

- Inaccessible: If the system has removed permission to access the
associated address, the OOB will result in a crash.

- Accessible & No Overlap: The address remains accessible but still
falls within the original heap chunk, without overlapping with other
heap chunks or the freed regions.

- Accessible & Overlap: The memory remains accessible, and the
associated address may overlap with another region.

FreeAllocated Allocated Invalid RegionFreeAllocated
Requested Size

Allocated Size

Threat Model

- Inaccessible: If the system has removed permission to access the
associated address, the OOB will result in a crash.

- Accessible & No Overlap: The address remains accessible but still
falls within the original heap chunk, without overlapping with other
heap chunks or the freed regions.

- Accessible & Overlap: The memory remains accessible, and the
associated address may overlap with another region.

FreeAllocated Allocated Invalid Region
Requested Size

Allocated Size

Threat Model

ShadowBound can be deployed either in conjunction with other UAF
defense mechanisms or independently. When deployed alongside
other UAF defenses, it is presumed that the target program
contains one or more heap out-of-bounds and use-after-free
vulnerabilities. If ShadowBound is used independently, the
assumption is limited to the presence of heap out-of-bounds
vulnerabilities. In this threat model, an attacker can only attempt to
exploit these vulnerabilities to potentially escalate privileges. Our
goal is to prevent these vulnerabilities to being exploitable.

Agenda

- Background: Heap Memory Errors and Defenses

- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

Checking Position

bitcast i8* %0 to i32*

getelementptr i32, i32* %5, i64 %11

Insert Boundary Checking at Pointer Arithmetic

Checking Position

bitcast i8* %0 to i32*

getelementptr i32, i32* %5, i64 %11

Insert Boundary Checking at Pointer Arithmetic

Ensure the base pointer and result pointer belong to same object

Metadata Design

1. Heap memory size are equal to shadow memory size.
2. Each aligned 8 bytes heap memory are mapped into 8 bytes

shadow memory.

How we store each pointer’s boundary?

Metadata Design

Why 64 bits is enough to save two size_t variables?
1. All mainstream allocators default to 8-byte or 16-byte aligned allocations.
2. The maximum single-time allocation size is limited to 8 GB (2^33 bits).

How we store each pointer’s boundary?

Boundary Checking

Boundary Checking

Boundary Checking

Boundary Checking

pack

Boundary Checking

pack

Agenda

- Background: Heap Memory Errors and Defenses

- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

- Runtime-Driven Checking Elimination

- Directional Boundary Checking

- Merge Metadata Extraction

- Security Pattern Identification

- Redundant Checking Elimination

Compiler Optimization

- Runtime-Driven Checking Elimination
- Directional Boundary Checking
- Merge Metadata Extraction
- Security Pattern Identification - DataGuard (NDSS 22)

- Redundant Checking Elimination - PACMem (USENIX Security 23)

Compiler Optimization

- Runtime-Driven Checking Elimination

- Directional Boundary Checking

- Merge Metadata Extraction

Compiler Optimization

Compiler Optimization

- If each heap chunk has infinite space, out-of-bounds access becomes impossible,

rendering all boundary checks redundant and eliminable. However, It’s

impractical to allocate infinite or even very large spaces for every chunk due to

the potential for high memory overhead.

- ShadowBound chooses an improved approach to balance time overhead and
memory overhead. Specifically, ShadowBound reserves a fixed n bytes for every

heap chunk, denoted as reserved space. Then, ShadowBound will try to find all

eliminable boundary checks using the reserved space provided by the runtime.

Runtime-Driven Checking Elimination

Compiler Optimization Runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base

pointer can be confirmed to be less than n bytes
at compile time.

- The result pointer will never be used as a base
pointer in another boundary checking.

Compiler Optimization Runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base

pointer can be confirmed to be less than n bytes
at compile time.

- The result pointer will never be used as a base
pointer in another boundary checking. Allocated Free

Compiler Optimization Runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base

pointer can be confirmed to be less than n bytes
at compile time.

- The result pointer will never be used as a base
pointer in another boundary checking. Allocated Free8-bytes

Reserved

Compiler Optimization Runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base

pointer can be confirmed to be less than n bytes
at compile time.

- The result pointer will never be used as a base
pointer in another boundary checking. Free Allocated

8-bytes
Reserved

Compiler Optimization Runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base

pointer can be confirmed to be less than n bytes
at compile time.

- The result pointer will never be used as a base
pointer in another boundary checking. Free

pointer c + 1 is passed to
another function, indicating
that it may be used as a
base pointer for boundary
checking

 Allocated
8-bytes

Reserved

- Runtime-Driven Checking Elimination

- Directional Boundary Checking

- Merge Metadata Extraction

Compiler Optimization

Compiler Optimization Directional Boundary Checking

- Boundary checking consists of two

parts: an underflow check and an

overflow check.

- By determining the sign (positive or

negative) of the offset between the

base pointer and the result pointer,

we can optimize the process by

inserting only the necessary check

for one side.

Compiler Optimization Directional Boundary Checking

- Boundary checking consists of two

parts: an underflow check and an

overflow check.

- By determining the sign (positive or

negative) of the offset between the

base pointer and the result pointer,

we can optimize the process by

inserting only the necessary check

for one side.

Compiler Optimization Directional Boundary Checking

- Boundary checking consists of two

parts: an underflow check and an

overflow check.

- By determining the sign (positive or

negative) of the offset between the

base pointer and the result pointer,

we can optimize the process by

inserting only the necessary check

for one side.

Compiler can consistently utilize the
computing process information

Hard to get the properties of
the pointer from within the
callee function.

- Runtime-Driven Checking Elimination

- Directional Boundary Checking

- Merge Metadata Extraction

Compiler Optimization

Compiler Optimization Merge Metadata Extraction

- Boundary checking contain two stage:

- The extraction stage to obtain the base
pointer's boundary.

- Followed by a subsequent checking stage

to validate the result pointer.
- The extraction stage is only determined by the

base pointer, which provide the opportunity to

merge them for different result pointer.

Agenda

- Background: Heap Memory Errors and Defenses

- Threat Model

- Design & Metadata Management

- Compiler Optimization

- Evaluation and Results

Security Evaluation

- Safeguard 19 programs against 34 exploitable out-of-bound bugs.

Real World Vulnerabilities

Security Evaluation

- we undertook synthesis vulnerability testing, generating 244 inputs to trigger

out-of-bounds bugs in various ways.

Synthesis Vulnerabilities

Performance Evaluation

- On SPEC CPU 2017, the geomean time overhead of each system is 5.72%,
6.60%, 9.95%, 16.20%, 62.03%, 79.85% and 138.76%.

SPEC CPU 2017

Performance Evaluation

- On SPEC CPU 2017, the geomean memory overhead of each system is
54.59%, 55.29%, 218.20%, 302.51%, 116.55%, 112.33%, 2.70%

SPEC CPU 2017

Performance Evaluation Real World Application

- We assessed using Nginx, Chakra, and Chromium. It introduces negligible

overhead to the tested real-world programs.

Ablation Study
- The bars show the time overhead of ShadowBound with full optimization, ShadowBound with each

optimization disabled, and ShadowBound without optimization. The geomean value is 5.72%, 9.51%,

11.56%, 11.76% 12.86%, 29.28% and 99.69%

Takeaways

- Efficient Protection: ShadowBound uses a novel metadata design to quickly fetch pointer
boundaries, ensuring compatibility with various Use-After-Free defenses and providing minimal
overhead.

- Optimized Performance: ShadowBound implements custom optimization techniques for
boundary checking, significantly reducing time overhead.

- Proven Effectiveness: Evaluations show ShadowBound consistently provides robust memory
protection with minimal overhead in benchmarks and real-world applications.

Zheng Yu (@dataisland99)

https://dataisland.org

zheng.yu@northwestern.edu

https://x.com/dataisland99
https://dataisland.org

