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Heap Memory Errors

- C/C++ inherently lack heap memory safety mechanisms.

- 2023 CWE top-most dangerous software weaknesses.

- Exploiting these vulnerabilities even can lead to privilege escalation.



Temporal Memory Errors

- Occurs when a program accesses memory 
that has already been freed or is no longer 
valid. (Use After Free, Double Free etc)

- Many prior works have focused on 

developing defenses against temporal 

memory vulnerabilities, with several 

notable for their low overhead.
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Spatial Memory Errors

- Spatial memory errors occur when a 

program accesses memory outside the 

allocated bounds.

- While there also many defenses against 

spatial memory errors have been 

proposed, most of them suffer from 

performance, compatibility or security 

issues. 



Spatial Memory Defense

- ❌> 50%: SoftBound (PLDI 09) / ASAN (ATC 12) / LowFat (CCS 16) / 
ESAN (PLDI 18) / SanRazor (OSDI 21) / ASAN–– (USENIX Security 22)

- ❌> 30%:  SGXBound (EuroSys 17) / DeltaPointer (EuroSys 18) / 
PACMem (CCS 22) / TailCheck (OSDI 23)

Performance Issue



Spatial Memory Defense

- ❌ Compatibility with UAF defense: Since SOTA UAF defenses 
introduce custom allocators, OOB defenses that also implement 
their own allocators may face challenges in integrating with UAF 
defenses. (LowFat / ESAN / TailCheck)

- ❌ Compatibility in Large-scale Program:  Some defenses reduce 
the available memory space to a very limited range (4GB), making 
them difficult to deploy them in large-scale programs. (SGXBound / 
DeltaPointer)

Compatibility Issue



Spatial Memory Defense

- ❌ Bypassed by Non-linear Overflow: Some tools are inherently 
designed for detection or debugging and are not suitable for spatial 
memory defense, as they can be bypassed by non-linear overflows. 
(ASAN, SanRazor, ASAN––,TailCheck)

- ❌ Bypassed by Underflow:  Some defenses forego underflow 
checks to minimize performance overhead. (TailCheck / DeltaPointer)

Security Issue



ShadowBound

- ✅ Low performance overhead, approximately 6%.

- ✅ Works seamlessly with UAF defenses, scalable to large programs.

- ✅ Provide robust spatial memory security.
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Threat Model

- Inaccessible:  If the system has removed permission to access the 
associated address, the OOB will result in a crash.

- Accessible & No Overlap:  The address remains accessible but still 
falls within the original heap chunk, without overlapping with other 
heap chunks or the freed regions.

- Accessible & Overlap: The memory remains accessible, and the 
associated address may overlap with another region.

FreeAllocated Allocated Invalid Region
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Threat Model

ShadowBound can be deployed either in conjunction with other UAF 
defense mechanisms or independently. When deployed alongside 
other UAF defenses, it is presumed that the target program 
contains one or more heap out-of-bounds and use-after-free 
vulnerabilities. If ShadowBound is used independently, the 
assumption is limited to the presence of heap out-of-bounds 
vulnerabilities. In this threat model, an attacker can only attempt to 
exploit these vulnerabilities to potentially escalate privileges. Our 
goal is to prevent these vulnerabilities to being exploitable.
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Checking Position

bitcast i8* %0 to i32*

getelementptr i32, i32* %5, i64 %11

Insert Boundary Checking at Pointer Arithmetic



Checking Position

bitcast i8* %0 to i32*

getelementptr i32, i32* %5, i64 %11

Insert Boundary Checking at Pointer Arithmetic

Ensure the base pointer and result pointer belong to same object



Metadata Design

1. Heap memory size are equal to shadow memory size.
2. Each aligned 8 bytes heap memory are mapped into 8 bytes 

shadow memory. 

How we store each pointer’s boundary?



Metadata Design

Why 64 bits is enough to save two size_t variables?
1. All mainstream allocators default to 8-byte or 16-byte aligned allocations.
2. The maximum single-time allocation size is limited to 8 GB (2^33 bits).

How we store each pointer’s boundary?
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- Runtime-Driven Checking Elimination

- Directional Boundary Checking

- Merge Metadata Extraction

- Security Pattern Identification

- Redundant Checking Elimination

Compiler Optimization



- Runtime-Driven Checking Elimination
- Directional Boundary Checking
- Merge Metadata Extraction
- Security Pattern Identification - DataGuard (NDSS 22)

- Redundant Checking Elimination - PACMem (USENIX Security 23)

Compiler Optimization
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Compiler Optimization

- If each heap chunk has infinite space, out-of-bounds access becomes impossible, 

rendering all boundary checks redundant and eliminable. However, It’s 

impractical to allocate infinite or even very large spaces for every chunk due to 

the potential for high memory overhead.

- ShadowBound chooses an improved approach to balance time overhead and 
memory overhead. Specifically, ShadowBound reserves a fixed n bytes for every 

heap chunk, denoted as reserved space. Then, ShadowBound will try to find all 

eliminable boundary checks using the reserved space provided by the runtime.

Runtime-Driven Checking Elimination



Compiler Optimization Runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base 

pointer can be confirmed to be less than n bytes 
at compile time.

- The result pointer will never be used as a base 
pointer in another boundary checking.
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Compiler Optimization Runtime-Driven Checking Elimination

ShadowBound can remove the boundary checking if

- The offset between the result pointer and base 

pointer can be confirmed to be less than n bytes 
at compile time.

- The result pointer will never be used as a base 
pointer in another boundary checking. Free

pointer c + 1 is passed to 
another function, indicating 
that it may be used as a 
base pointer for boundary 
checking

              Allocated
8-bytes 

Reserved
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Compiler Optimization Directional Boundary Checking

- Boundary checking consists of two 

parts: an underflow check and an 

overflow check.

- By determining the sign (positive or 

negative) of the offset between the 

base pointer and the result pointer, 

we can optimize the process by 

inserting only the necessary check 

for one side.
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Compiler Optimization Directional Boundary Checking

- Boundary checking consists of two 

parts: an underflow check and an 

overflow check.

- By determining the sign (positive or 

negative) of the offset between the 

base pointer and the result pointer, 

we can optimize the process by 

inserting only the necessary check 

for one side.

Compiler can consistently utilize the 
computing process information

Hard to get the properties of 
the pointer from within the 
callee function.
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Compiler Optimization Merge Metadata Extraction

- Boundary checking contain two stage: 

- The extraction stage to obtain the base 
pointer's boundary.

- Followed by a subsequent checking stage 

to validate the result pointer.
- The extraction stage is only determined by the 

base pointer, which provide the opportunity to 

merge them for different result pointer.
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Security Evaluation

- Safeguard 19 programs against 34 exploitable out-of-bound bugs.

Real World Vulnerabilities



Security Evaluation

- we undertook synthesis vulnerability testing, generating 244 inputs to trigger 

out-of-bounds bugs in various ways.

Synthesis Vulnerabilities



Performance Evaluation

- On SPEC CPU 2017, the geomean time overhead of each system is 5.72%, 
6.60%, 9.95%, 16.20%, 62.03%, 79.85% and 138.76%.

SPEC CPU 2017



Performance Evaluation

- On SPEC CPU 2017, the geomean memory overhead of each system is  
54.59%, 55.29%, 218.20%, 302.51%, 116.55%, 112.33%, 2.70%

SPEC CPU 2017



Performance Evaluation Real World Application

- We assessed using Nginx, Chakra, and Chromium. It introduces negligible 

overhead to the tested real-world programs.



Ablation Study
- The bars show the time overhead of ShadowBound with full optimization, ShadowBound with each 

optimization disabled, and ShadowBound without optimization. The geomean value is 5.72%, 9.51%, 

11.56%, 11.76% 12.86%, 29.28% and 99.69%



Takeaways

- Efficient Protection: ShadowBound uses a novel metadata design to quickly fetch pointer 
boundaries, ensuring compatibility with various Use-After-Free defenses and providing minimal 
overhead.

- Optimized Performance: ShadowBound implements custom optimization techniques for 
boundary checking, significantly reducing time overhead.

- Proven Effectiveness: Evaluations show ShadowBound consistently provides robust memory 
protection with minimal overhead in benchmarks and real-world applications.
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