
Toward Practical Program Repair

Zheng Yu

Committee: Xinyu Xing (Chair)
Peter Dinda, Yan Chen, Kexin Pei

1

2

Vulnerability Explosion: Growing Threat Landscape

3

Thousands of Security Vulnerabilities Remain Unpatched

4

Typical Automated Program Repair (APR) Workflow

Fault Localization

Patch Generation

Patch Validation

Takes both the buggy code snippet and bug
description as input, then produces a patch.

FL aims to identify the root cause and to
provide code locations to apply patches.

Verify that a patch addresses vulnerabilities
while maintaining functional integrity.

5

Unrealistic Assumptions in Previous Studies

Patch Generation

Patch Validation

Takes both the buggy code snippet and bug
description as input, then produces a patch.

Verify that a patch addresses vulnerabilities
while maintaining functional integrity.

if (tp_len(ctx, p1) -= cnt -&
 tp_len(ctx, p) -= pos + cnt) {
 memcpy(p1->ptr,
 p->ptr + (pos -< oft),
 cnt -< oft);
} else {
 for (n = 0; n < cnt; n-+) {

Use Perfect
FL

As Input

if (tp_len(ctx, p1) -= cnt -&
 tp_len(ctx, p) -= pos + cnt) {
 memcpy(p1=>ptr,
 p=>ptr + (pos =< oft),
 cnt =< oft);
} else {
 for (n = 0; n < cnt; n-+) {

if (tp_len(ctx, p1) -= cnt -&
 tp_len(ctx, p) -= pos + cnt) {
 memcpy(p1->ptr,
 p->ptr + (pos -< oft),
 cnt -< oft);
} else {
 for (n = 0; n < cnt; n-+) {

Vulnerable Function Mask Vulnerable Line Mask Vulnerable Token

6

Scenario 1: Patch Backporting

Mainline Codebase Mainline Patch Stable Codebase

Stable Patch

Prior work 1:
PortGPT: Towards Automated Backporting

Using Large Language Models
(IEEE S&P 2026)

8

Backporting Background

9

Backporting Background

fork point

10

Backporting Background

…

fork point mainline develop

11

Backporting Background

…

…

fork point mainline develop

stable develop

12

Backporting Background

…

…

fork point mainline develop

stable develop

13

Backporting Background

…

…

fork point original patchmainline develop

stable develop

14

Backporting Background

…

…

fork point original patch

backported patch

mainline develop

stable develop

15

Backporting Background

…

…

fork point original patch

backported patch

mainline develop

stable develop

conflict commits

16

PortGPT Design

17

PortGPT Design - Stage 1

- PortGPT extracts hunks from the original
patch and per each hunk.

- PortGPT first determines whether the hunk
requires backporting, and if so, transforms the
hunk to ensure compatibility with the target
version.

- This stage aims to ensure that the generated
patch can be successfully applied to the target
version.

18

PortGPT Design - Stage 2

- PORTGPT combines the transformed
hunks, applies the entire patch to the
target version, and sends the
backported codebase for compilation.
If compilation failed.

- PORTGPT attempts to resolve them
by adding necessary definitions or
adjusting the code context to finalize
the transformation.

19

PortGPT Design

20

Performance Evaluation

21

Real World Application

9 Patches Merged Into Linux-6.1

22

Scenario 2: Repair Fuzzing-Found Vulnerability

 Project Codebase Sanitizer Report PoC Inputs

Final Patch

Prior work 2:
PatchAgent: A Practical Program Repair Agent

Mimicking Human Expertise
(USENIX Sec 2025)

24

LLM for Program Repair

✅ Comprehending bug reports.

✅ Comprehending code snippets.

✅ Writing a patch.

❌ Resolving definitions of symbols.

❌ Applying the patch for validation

25

LLM Agent for Program Repair

✅ Comprehending bug reports.

✅ Comprehending code snippets.

✅ Writing a patch.

✅ Resolving definitions of symbols.

✅ Applying the patch for validation

Language Server

Patch Verifier

26

LLM Agent for Program Repair

✅ Comprehending bug reports.

✅ Comprehending code snippets.

✅ Writing a patch.

✅ Resolving definitions of symbols.

✅ Applying the patch for validation

Language Server

Patch Verifier

27

A Global Buffer Overflow Bug

==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId:
f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

28

What ability do human/LLM have?

View Code Validate
The viewcode API retrieves
the code context by specifying
file names and line numbers

The find_definition finds the definition
location of symbols by specifying their
names and reference locations

The validate API to check if the patch
can mitigate the PoC and pass all
functional tests

Find Definition

29

Human Expert
==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

30

Human Expert
==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

31

Human Expert
==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

32

Human Expert
==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

33

Human Expert
==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

34

Human Expert
==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

35

Vanilla Agent

==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

36

Vanilla Agent

==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

37

Vanilla Agent

==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

38

Vanilla Agent

==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

39

Vanilla Agent

==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

40

Vanilla Agent

==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

41

Vanilla Agent

==35==ERROR: AddressSanitizer: global-buffer-overflow
READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in Compile_Block /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatement /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer-:Fuzzer-:ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations

 SUMMARY: AddressSanitizer: global-buffer-overflow

Too small code range

Why not continue exploring related function?

42

PatchAgent

The process begins with the sanitizer report and the project codebase (1). The LLM retrieves the code context
using the viewcode and find_definition APIs (2) and then generates a patch (3). The patch is subsequently
validated by the patch verifier (4). If the patch is incorrect, the agent will refine the patch or gather additional
context (5), iterating until a correct patch is generated or the budget is exhausted.

43

Auto Correction

Common Tool Call Process

{
 “action”: “viewcode”,
 “path”: “src/m3_compile.c”,
 “start_line”: 21,
 “end_line”: 23
}

21| _throwif(unknownOpcode, opinfo -= NULL);
22| if (opinfo->compiler) {
23| (*opinfo->compiler) (o, opcode)

Language Server

44

Auto Correction

 Tool Call Process
(with Auto Correction)

{
 “action”: “viewcode”,
 “path”: “src/m3_compile.c”,
 “start_line”: 21,
 “end_line”: 23
}

Language Server

45

Auto Correction

 Tool Call Process
(with Auto Correction)

{
 “action”: “viewcode”,
 “path”: “src/m3_compile.c”,
 “start_line”: 17,
 “end_line”: 27
}

Language Server

46

Auto Correction

 Tool Call Process
(with Auto Correction)

{
 “action”: “viewcode”,
 “path”: “src/m3_compile.c”,
 “start_line”: 17,
 “end_line”: 27
}

Language Server

17| Compile_BlockStat(IM3Compilation o) {
18| m3opcode_t opcode;
19| Read_opcode (&opcode, &o);
20| IM3OpInfo opinfo = GetOpInfo(opcode);
21| _throwif(unknownOpcode, opinfo -= NULL);
22| if (opinfo->compiler) {
23| (*opinfo->compiler) (o, opcode)
24| } else {
25| Compile_Operator (o, opcode);
26| }
27| }

47

Auto Correction
Code Viewing Enhancement

Expanded code range visibility and corrected file path references

● Resolved issues with narrow code display windows that limited readability

● Fixed incorrect file path typos that were breaking navigation links

Symbol Definition Resolution

Enhanced alias symbol detection and lookup

● Improved the "Find Definition" feature to properly handle aliased symbols

● Resolved cases where symbol aliases were not being recognized or linked correctly

Validation System Updates

Standardized patch format processing

● Fixed validation errors related to inconsistent patch formats

● Ensured all patch submissions now follow proper formatting standards

48

Chain Compression

The LLM takes the initial prompt as input and starts interacting with the language server. The black
bold arrows illustrate the interaction without chain compression, while the black dashed arrows
represent the compressed interaction process. The original interaction chain of length four was
compressed into a single interaction.

49

Chain Compression

1. After the LLM sends a viewcode action, the mechanism determines that the crash is caused by the
dereference of info and the line where info located appears in both the viewed code snippet and the
sanitizer report. This indicates that it is a valuable symbol to explore.

50

Chain Compression

2. Using only the find_definition action to locate the definition of info is insufficient to reveal its
complete information. Therefore, the mechanism first generates another viewcode action to obtain
the definition code snippet of info.

51

Chain Compression

3. Then, it identifies that the variable relies on another symbol, GetOpInfo, and recursively finds its
definition location.

52

Dataset Overview

We created a dataset comprising 178 cases
sourced from OSS-Fuzz , Huntr and ExtractFix
on 9 distinct bug types: stack overflow, heap
overflow, integer overflow, use-after-free,
double free, global overflow, divide by zero,
invalid free, and null dereference.

53

Effectiveness Evaluation

This table compares the effectiveness of PatchAgent when utilizing different LLMs to repair vulnerabilities.
The Union row represents the combined results of PatchAgent across all models, demonstrating the
overall improvement in repair accuracy achieved through the collaborative use of multiple models.

54

Github Pull Requests

Proposed work:
Explore the Problem of AI-Generated Patch

56

Issues with Submitting Patches in the Real World

Incorrect Root Cause

Functional Issue

Security Issue

57

Revisit the Workflow of Program Repair

Fault Localization

Patch Generation

Patch Validation

Takes both the buggy code snippet and bug
description as input, then produces a patch.

FL aims to identify the root cause and to
provide an code location to apply patches.

Verify that a patch addresses vulnerabilities
while maintaining functional integrity.

58

Revisit the Workflow of Program Repair

Patch Validation
Verify that a patch addresses vulnerabilities
while maintaining functional integrity.

Replay the PoC Rerun Functional Test
(e.g., Github CI)

59

- CrashRepair (TOESM 2025)
- CPR (PLDI 2021)
- Fix2Fit (ISSTA 2019)
- Zero-Shot (S&P 2023)
- San2Patch (USENIX Sec 2025)
- VulnFix (ISSTA 2022)
- ……

Works Using Test Suite-Based Validation Method

60

Obervations from a PHP Case

- Existing functional tests (e.g., CI) are
not able to capture full functionality.

- Developers may upgrade functional
tests during vulnerability repair.

[1] https://github.com/php/php-src/commit/1d6f344bea49ccad82b9a95a80ed9fdc39e260a1

New Testcase

Patch

61

Obervations from a PHP Case

- Existing functional tests (e.g., CI) are
not able to capture full functionality.

- Developers may upgrade functional
tests during vulnerability repair.

[1] https://github.com/php/php-src/commit/1d6f344bea49ccad82b9a95a80ed9fdc39e260a1

New Testcase

Patch

What kind of functionality does
the new test case try to capture?

62

Vulnerability Principle

63

Vulnerability Principle

64

Developer Thinkings (“New TestCase”)

PHP Specification

New Testcase

Develop Patch

65

Developer Patch vs LLM Patch

a. Developer Patch

b. LLM Patch

d. Output (w. LLM Patch)c. Developer’s Testcase

LLM Patch violates PHP specification

66

- RQ1: Does test suite-based validation substantially
overestimate program repair system performance?

- RQ2: How reliable is using “new test cases” to validate
patches generated by current program repair systems?

- RQ3: How to measure the quality of a testcase for validating
a patch?

Research Question

- Benchmark: Develop a benchmark to evaluate whether current
test suite-based validation methods significantly overestimate
the effectiveness of program repair tools.

- Positive Case Anaylsis: Compare patches that successfully pass
the new benchmark against actual developer-written patches to
assess benchmark reliability and identify potential limitations in
evaluation methodology.

- Testcase Measurement: Find metrics to measure the quality and
reliability of test cases for software functionality.

67

Research Plan

68

Why Should It Works?

- Solid Observation: I observed a large number of AI-generated
patches that differ significantly from developer patches in
previous projects, and developers have also provided negative
feedback.

- Preliminary Analysis: I have obtained some preliminary analysis
results on PHP projects, which reflect the assumptions of our
proposed work.

- Rich Experience: My previous research has provided me with
considerable experience and expertise in determining patch
correctness.

