
End-to-End Vulnerabilty Repair

Automated program repair (APR) techniques,
which aim to triage and fix so�ware bugs
autonomously, have emerged as powerful
tools against vulnerable code. However,
without effective fault localization and patch
validation, APR tools specialized in patching
alone cannot handle a more practical and
end-to-end se�ing, given a concrete input that
triggers a vulnerability, how to patch the
program without breaking existing tests?

In this paper, we introduce PatchAgent, a
novel LLM-based APR tool that seamlessly
integrates fault localization, patch
generation, and validation within a single
autonomous agent. PatchAgent employs a
language server, a patch verifier, and
interaction optimization techniques to mimic
human-like reasoning during vulnerability
repair. Evaluated on a dataset of 178
real-world vulnerabilities, PatchAgent
successfully repairs over 90% of the cases,
outperforming state-of-the-art APR tools
where applicable. Our ablation study further
offer insights into the how various interaction
optimizations contribute to PatchAgent's
effectiveness.

PatchAgent combines fault localization,
patch generation, and patch validation
in a unified system.

Abstract

“PR Merged”

Fix Real World
Vulnerability

PatchAgent can benefit from multiply model.

Github Pull Request
PatchAgent has successfully addressed
critical vulnerabilities across popular
libraries including assimp (fixing
#5763, #5764, and #5765), libssh2
(#1508), hdf5 (#5201 and #5210),
libredwg (#1061), and PcapPlusPlus
(#1678, #1680, and #1699).

Vanilla Agent
 According to the address sanitizer report, a
 global overflow occurred at line 22 in the
 /source/m3_compile.c. So I want to view lines
 21 to 23 in /source/m3_compile.c.

Address Sanitizer Report
 ==35==ERROR: AddressSanitizer: global-buffer-overflow
 READ of size 8 at 0x55bc18 thread T0
 #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
 #1 0x55c4c6 in CompileBlock /source/m3_compile.c:2277
 #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
 #3 0x5596ec in Compile_BlockStatements /source/m3_compile.c:2207
 #4 0x55ca29 in Parse_InitExpr /root/source/m3_parse.c:282

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
 #9 0x552e14 in fuzzer::Fuzzer::ExecuteCallback (BuildId: f0fdeb36a)

 0x555bc18 is located 88 bytes after global variable c_operations
 SUMMARY: AddressSanitizer: global-buffer-overflow
 Shadow bytes around the buggy address:

Human Expert

 _throwif(unknownOpcode, opinfo == NULL);
 if (opinfo->compiler) {
 (*opinfo->compiler) (o, opcode)

 It appears that the overflow occurs in opinfo.
 I would like to locate the definition of opinfo.

 The variable opinfo is defined at line 20 in
 the /source/m3_compile.c.

 To address the global overflow vulnerability in
 the opinfo structure, you can introduce bounds
 checking before dereferencing.The patch ensure
 that opinfo points to a valid memory location

 According to the address sanitizer report, a
 global overflow occurred at line 22 in the
 /source/m3_compile.c. Let me view lines
 17 to 27 in /source/m3_compile.c.

 IM3OpInfo opinfo = GetOpInfo(opcode);
 _throwif(unknownOpcode, opinfo == NULL);
 if (opinfo->compiler) {
 (*opinfo->compiler) (o, opcode)

 `opinfo` is an overflow pointer generated by
 GetOpInfo, I would like to locate its definition.

 The variable GetOpInfo is defined at line 5 in
 the /source/m3_compile.c.

 Great, now I want to view lines 5 to 16 in
 /source/m3_compile.c

 GetOpInfo(m3opcode_t opcode) {
 switch (opcode >> 8) {
 case 0x00:
 return &c_operations[opcode];

 The report indicates that the overflow occurred
 in c_operations, so I need to add a boundary
 check before performing pointer arithmetic.

 m3opcode_t opcode;
 read_opcode(&opcode,&o);
 IM3OpInfo opinfo = GetOpInfo(opcode);

 Great, now I want to view lines 17 to 20 in
 /source/m3_compile.c

@@ -15,4 +15,8 @@ Compile_BlockStat

 m3opcode_t opcode;

 Read_opcode(&opcode, &o);

+if (opcode < 0 ||

+ opcode > MAX_OPCODE) {

+ return unknwonOpcode;

+}

 IM3OpInfo opinfo = GetOpInfo(...

 _throwif(unknwonOpcode,opinfo...

 @@ -4,7 +4,15 @@ GetOpInfo

 switch (opcode >> 8) {

 case 0x00:
 +if(opcode < sizeof(c_operations))

 +{

 return &c_operations[opcode];

 +}

 +break;

 case 0xFC:

 ...

Agent Patch Expert Patch

Motivation: Human vs Vanilla LLM Agent

Comparing program repair processes between vanilla LLM agents and
human experts reveals four critical challenges that prevent AI from
reaching human-level debugging capabilities. First, ineffective ability
utilization occurs when agents focus too narrowly on code snippets,
requiring multiple rounds to gather information that humans collect in
one sweep. Second, poor timing of ability application happens when
agents fail to investigate dependencies at the right moment, leading to
incomplete analysis and incorrect fixes. Third, report comprehension
issues arise when agents miss key details from sanitizer reports that
human experts immediately recognize as crucial to understanding
vulnerabilities. Finally, lack of variability means agents generate
repetitive, ineffective solutions without learning from previous failed
a�empts. To address these gaps, we propose middleware solutions
including report purifiers to transform sanitizer outputs into
LLM-friendly formats, monitoring systems to guide ability usage, and
feedback mechanisms to prevent repeated generation of similar failed
patches.

Sanitizer Report
==35==ERROR: AddressSanitizer: global-bu�er-over�ow
READ of size 8 at 0x55bc18 thread T0
#0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
......

Project Codebase
Source/

m3_compile.c

m3_parse.c
app_fuzz/

fuzzer.c

fuzzer.h

Initial input

LLM output

Environment
 output

Optimization
component

Large Language Model

Environment

Language
Server

FindDef

CounterExample

ChainCompress AutoCorrection

ReportPurify

Viewcode

Evaluate Patch
Generated Patch +8 -4

m3_compile.c

m3_parse.c

Patch Verifier

Patch
Success!

Patch
Failed

Optimization

0 5 10 15 20 25 30 35 40 45 50
Average Time (min)

Claude-3 Haiku

Claude-3 Sonnet

Claude-3 Opus

GPT-4 Turbo

GPT-4o

validate model find_definition viewcode

Ablation Study & Cost Analysis

Effectiveness Evlaution

 if (info->compiler) {
 ((*info->compiler) (o));
 } else {
 Compile_Operator(o);
 }

viewcode
m3_compile.c:608

"info" is defined at
m3_compile.c:101

find_definition
info

(m3_compile.c:608)

info = GetOpInfo(opcode);
if (info == NULL)
 throw UnknownCode;

viewcode
m3_compile.c:101

"GetOpInfo" is defined at
m3_compile.h:155

find_definition
GetOpInfo

(m3_compile.c:101)

➊

 Here is ASan Report:
 ERR: out-of-bounds
 foo (m3_compile.c:608)
 bar (m3_compile.c:206)
 zoo (m3_compile.c:980)

 Please repair the bugs.

➋ ➌

Initial Prompt

“Four Interaction Optimizations Make Agent Be�er”

Report Purification: It transforms complex
sanitizer reports into a format that the LLM
can easily process, emulating how an
experienced developer would focus on and
interpret key details from error reports.

Chain Compression: This component helps
the agent make more optimal decisions about
when and how to use available abilities. It
assists in identifying dependencies and
providing the necessary code context
autonomously for the LLM agent.

Auto Correction: This component corrects
ineffective ability usage, mimicking an
expert's proficiency in utilizing these abilities
correctly. By doing so, it prevents the LLM
from repeatedly adjusting parameters when
calling ability APIs.

Counterexample Feedback: It saves failed
patches and provides feedback to prevent the
generation of similar ineffective patches
repeatedly, mimicking a developer's ability to
learn from mistakes and vary their approach.

 Chain of length 4 was compressed into a single interaction by chain compression !!

Zheng Yu Ziyi Guo Yuhang Wu Jiahao Yu Dongliang Mu Yan Chen Xinyu Xing

PatchAgent Tool Usenix
 Security
 2025A Practical Program Repair Agent Mimicking Human Expertise

