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Abstract
Automated program repair (APR) techniques, which aim

to triage and fix software bugs autonomously, have emerged
as powerful tools against vulnerable code. Recent advance-
ments in large language models (LLMs) have further shown
promising results when applied to APR, especially on patch
generation. However, without effective fault localization and
patch validation, APR tools specialized in patching alone can-
not handle a more practical and end-to-end setting—given a
concrete input that triggers a vulnerability, how to patch the
program without breaking existing tests?

In this paper, we introduce PATCHAGENT, a novel LLM-
based APR tool that seamlessly integrates fault localization,
patch generation, and validation within a single autonomous
agent. PATCHAGENT employs a language server, a patch
verifier, and interaction optimization techniques to mimic
human-like reasoning during vulnerability repair. Evaluated
on a dataset of 178 real-world vulnerabilities, PATCHAGENT
successfully repairs over 90% of the cases, outperforming
state-of-the-art APR tools where applicable. Our ablation
study further offer insights into the how various interaction
optimizations contribute to PATCHAGENT’s effectiveness.

1 Introduction

As programs grow in size and complexity, they also become
increasingly vulnerable, as evident in reports [4] and CVE
records [57]. For example, fuzz testing (a.k.a. fuzzing) alone
has enabled the discovery of thousands of vulnerabilities in
large and complex software [85, 91], not to mention other
program analysis tools [17, 92] that continuously run on the
software deployment pipelines. However, merely discovering
vulnerabilities is not sufficient to eliminate the threat; these
vulnerabilities must be mitigated promptly and effectively.

While generic program hardening techniques such as mem-
ory defense [51, 98, 109, 112] or software fault isolation
(SFI) [55, 76, 79, 82] have been proposed to mitigate certain
types of vulnerabilities, these techniques can run into perfor-
mance or compatibility issues [89]. More importantly, they do

not aim to fix the code logic that causes the vulnerability. In
contrast, Automated Program Repair (APR) [46]—especially
source code-based APR tools—aim to patch the buggy code
directly without distorting functionalities nor introducing un-
necessary overhead. Effective APR tools can significantly
reduce if not eliminate manual effort in patching a security
vulnerability [40], and hence, may help shorten the time frame
between vulnerability discovery and fix rollout.

Over the past decade, APR has received much attention
from researchers [46, 58, 114], especially on patch generation
techniques. Briefly, a patch generator takes both the buggy
code snippet and some form of bug description (a.k.a., bug
metadata) as input and produces a patch that fixes this bug
without violating generic requirements for patches (e.g., edit
distance [13], idiomaticity [87], or functional specifications
[37]). More recently, the research on patch generator has en-
tered the era of large language models (LLMs) [23, 102, 103],
especially when LLM-based patch generators have outper-
formed conventional ones in results [102].

However, patch generation is only a midstream task in
APR. Most patch generators require effective fault localiza-
tion (FL)—some even assume perfect FL [96, 103, 104] —to
pinpoint the buggy code snippet. This introduces two chal-
lenges when applying end-to-end APR to real-world software:
1) FL techniques based on static analysis are prone to high
false positive rates [52], and patching correct code is not only
dangerous but also creates extra work for developers. 2) FL
techniques based on dynamic execution of proof-of-concept
(PoC) test cases face the challenge of slicing a real-world
program into a small bug-enclosing snippet. Previous studies
have shown that the execute traces of bug-triggering inputs are
typically excessively long [11, 77], ruling out straightforward
adoption of program slicing techniques [39, 59] .

The downstream task of patch generation is patch vali-
dation, which is often left to either manual review [100] or
automated testing [78] where in the latter case a patch is
considered “correct” when all the tests pass, including the
mitigation of the PoC, if exists. While this is arguably the
state-of-the-practice [28, 44, 100] treating patch generation



and validation as separate steps forgoes the opportunity to
harvest useful information in partially correct patch and the
reasons of failure, which could be used as a feedback for the
next round of patch generation.

In this paper, we take a holistic view of APR and propose
PATCHAGENT, a push-button APR tool that handles FL,
patch generation, and patch validation in an integrated LLM
agent which manages the entire context during APR. In par-
ticular, PATCHAGENT tackles a practical issue—patching a
vulnerable program based on a single PoC test case (i.e., a
guaranteed true positive bug report). This is modeled after
realistic settings such as 1) a fuzzer finds a bug or 2) a commu-
nity member files a bug report with a PoC test case included.
More specifically, PATCHAGENT targets large and complex
software with source code available and requires that:

• at least one PoC test case to trigger the vulnerability
• a (textual) description of the vulnerability triggered
• a functional test suite to validate integrity of core logic

Static analysis reports, on the other hand, are not required by
PATCHAGENT although they can be integrated as additional
metadata on the vulnerability triggered.

The key principle behind PATCHAGENT is to mimic how
human developers might triage and patch a bug, which typ-
ically includes a mixed ordering of actions ranging from ①
comprehending bug reports, ② comprehending code snippets,
③ resolving definitions of symbols, ④ writing a patch, and ⑤
applying the patch for validation. As most pre-trained LLMs
only support ①, ②, and ④ natively, we additionally program
a language server (for ③), and a patch verifier (for ⑤) as abili-
ties into the LLM agent. Note that we do not claim generality
nor optimality on the set of abilities provided in PATCHA-
GENT as they are based on self-reflection of how members in
the author team patch bugs and we look forward to seeing a
more principled approach in devising the set of abilities.

However, merely providing the abilities to the LLM agent
does not empower the agent to “reason” like a developer
(shown in §3), which could be caused by the contrast that
bug triaging and patching usually involves heavy code analy-
sis [31, 105] while LLMs do not have robust reasoning capa-
bilities [32]. To address this issue, we introduce an assisted
reasoning middleware between the LLM agent and the APIs
for the provided abilities. The middleware contains four mech-
anisms: ❶ report purification to facilitate an LLM in interpret-
ing bug reports; ❷ chain compression to shorten the reasoning
chain of the LLM agent; ❸ auto correction to correct errors
that occur during the interaction between LLM and ability
APIs; and ❹ counterexample feedback to encourage the LLM
agent to generate diversified patches. These optimizations
bring remarkable improvements as shown in §7.3.

Simultaneously, we understand that even with the intro-
duction of these four distinct optimization components in
our PATCHAGENT framework, it does not imply that our sys-
tem has achieved human-comparable capabilities in holis-
tic program repair. Human experts remain unparalleled in

their ability to address real-world vulnerabilities. Through
PATCHAGENT, we aim to leverage insights inspired by hu-
man expertise to assist LLMs in improving program repair
tasks. Looking ahead, we aspire to gradually uncover and in-
tegrate more nuanced patching techniques, practices, and tips
from human experts into PATCHAGENT, further enhancing
its effectiveness over time.

To demonstrate the effectiveness of PATCHAGENT in re-
pairing real-world vulnerabilities, we created a dataset com-
prising 178 cases sourced from OSS-Fuzz [85], Huntr [34]
and ExtractFix [24] on 9 distinct bug types: stack overflow,
heap overflow, integer overflow, use-after-free, double free,
global overflow, divide by zero, invalid free, and null deref-
erence. PATCHAGENT is built upon the GPT-4 series from
OpenAI [72] and the Claude-3 series from Anthropic [10].
PATCHAGENT exhibited remarkable performance on the
dataset, successfully repairing 92.13% vulnerabilities. Each
repairing solution passed both the security tests and func-
tional tests. We also show that PATCHAGENT outperforms
two state-of-the-art APR methods (ExtractFix [24] and Pearce
et al. [78]) that are closely aligned with PATCHAGENT in the
overall goal.
Contributions. In summary, the four main contribution of
our works are as follows:

• We propose a novel LLM-based program repair agent
that leverages a language server and patch verifier to
analyze programs, generate patches, and validate them.

• We introduce four interaction optimizations to enhance
the repair performance of PATCHAGENT. An ablation
study demonstrates their effectiveness in improving re-
pair performance.

• We evaluate our prototype and provide in-depth analysis,
demonstrating the effective and efficient of PATCHA-
GENT, including on vulnerabilities that LLMs have never
encountered before.

• PATCHAGENT has made an impact in the real world.
We successfully used PATCHAGENT to repair numerous
real-world vulnerabilities. Additionally, after PATCHA-
GENT was built, tested, and documented in a research
article, a subset of the authors, together with some mem-
bers of team 42-b3yond-6ug [1], further customized and
re-engineered it, leveraging part of its capabilities to par-
ticipate in the DARPA AI Cyber Challenge (AIxCC) [8],
where the team advanced to the finals.

We have strictly followed ethical guidelines when developing
PATCHAGENT. We also plan to make our code, dataset, and
evaluation artifacts publicly available to promote transparency
and follow-up works.

2 Background on Automated Program Repair

Automated Program Repair (APR) aims to reduce the manual
effort required to fix vulnerabilities. In this work, we focus on



scenarios where a proof-of-concept (PoC) input is available,
accompanied by a vulnerability description and a functional
test suite to ensure the integrity of core logic, thus eliminating
the need for static analysis. It is important to note that not all
APR approaches adhere to this setting; many rely on static
analysis [31, 105] or exact fault localization [96, 103, 104].
Our PoC-driven approach streamlines integration with fuzzing
which provides PoC inputs, and boosts practicality especially
considering the sheer volume of bugs found in industry-scale
fuzzing campaigns like OSS-Fuzz [85] and syzkaller [91].

2.1 Workflow for PoC-driven APR
Under this setting, the APR process typically involves three
key steps, as described below:
Fault localization. Fault localization (FL) aims to identify
the root cause of a vulnerability and to provide an optimal
code location to apply patches. Previous works [16, 30, 108]
have utilized program analysis techniques such as data flow
analysis and symbolic execution to verify program entities
against manually crafted rules to uncover potential root causes.
However, these analysis rules are typically bound to certain
vulnerability types and are limited by high computational over-
head. Other works [11, 77, 86, 106] employ a statistics-based
method, which involves scoring elements in the program to
perform root cause analysis. To enhance the statistics-based
method, fuzzing techniques are often employed to explore
both crashing and non-crashing inputs. These methods are
also time-consuming due to the extensive use of fuzzing. Ad-
ditionally, they fail to provide the exact root cause location
and cause, instead offering a list of potential candidates.
Patch generation. Broadly categorized, a patch generator
can be ① search-based [45, 80], which search for a correct
patch in a predefined patch space scoped by heuristics; ②
constraint-based [24, 31], which employ advanced constraint
solvers or program synthesis techniques to generate candidate
patches that toggle the bug-triggering condition; ③ pattern-
based [54, 97], which applies program fixed templates (a.k.a.,
transformation schema) to buggy code to generate patches,
where the templates can be either manually defined or mined
automatically; ④ learning-based [36, 111], which learns a
mapping between a buggy code snippet (with optional meta-
data) and the corresponding patch via training and applies
the learned model to generate patches. It is different from
pattern-based APRs primarily because fix templates are never
explicitly defined in the process.
Patch validation. Fixation [28] uses distance-bounded weak-
est preconditions to identify partially fixed exceptions in Java
programs. Le and Pattison [44] introduced a novel program
representation called the multi-version interprocedural con-
trol flow graph, which integrates and compares the control
flow of multiple versions of programs. They also developed
a demand-driven, path-sensitive symbolic analysis that tra-
verses the graph to detect bugs related to software changes.

1 const M3OpInfo c_operations[] = { /* ... */ };
2 const M3OpInfo c_operationsFC[] = { /* ... */ };
3

4 static inline const M3OpInfo*
5 GetOpInfo(m3opcode_t opcode) {
6 switch (opcode >> 8) {
7 case 0x00:
8 return &c_operations[opcode];
9 case 0xFC:

10 return &c_operationsFC[opcode & 0xFF];
11 default:
12 return NULL;
13 }
14 }
15

16 M3Result
17 Compile_BlockStat(IM3Compilation o) {
18 m3opcode_t opcode;
19 Read_opcode (&opcode, &o);
20 IM3OpInfo opinfo = GetOpInfo(opcode);
21 _throwif(unknownOpcode, opinfo == NULL);
22 if (opinfo->compiler) { // global overflow
23 (*opinfo->compiler) (o, opcode)
24 } else {
25 Compile_Operator (o, opcode);
26 }
27 }

Listing 1: An out-of-bound access vulnerability in WASM3.

KLAUS [100] leverages abstract interpretation to extract mod-
ified read and write operations caused by patches in the Linux
kernel. It combines these modifications with branch-resolving
mechanisms to guide a kernel fuzzer toward relevant code and
contexts. However, these methods focus on specific programs
and vulnerabilities and are not adaptable to the diversity of
real-world programs.
Holistic solution. ExtractFix [24] is a holistic APR solu-
tion that employs symbolic execution for fault localization. It
extracts a crash-free constraint from a PoC and identifies suit-
able fix points within the program’s code. This constraint is
then propagated to these points, where a pattern-based method
generates patches that satisfy the constraint for all possible
inputs. The PoC is subsequently replayed to verify the cor-
rectness of the patch. However, a notable drawback of this
approach is the significant computational overhead associated
with symbolic execution, which often suffer from path explo-
sion issues. Additionally, the pattern-based patch generation
approach may struggle with more complex vulnerabilities,
such as use-after-free scenarios.

2.2 LLMs and Their Applications in APR

Large Language Models (LLMs) have demonstrated excep-
tional capabilities in various natural language processing
tasks, including text classification and generation [12, 81].
By leveraging their sophisticated language modeling abilities,
LLMs can generate coherent text by predicting subsequent to-



Vanilla Agent
                According to the address sanitizer report, a 
                global overflow occurred at line 22 in the 
                /source/m3_compile.c. So I want to view lines 
                21 to 23 in /source/m3_compile.c.

Address Sanitizer Report
     ==35==ERROR:  AddressSanitizer: global-buffer-overflow
    READ of size 8 at 0x55bc18 thread T0
         #0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
         #1 0x55c4c6 in CompileBlock /source/m3_compile.c:2277
         #2 0x55cbc3 in Compile_If /source/m3_compile.c:1648
         #3 0x5596ec in Compile_BlockStatements /source/m3_compile.c:2207
         #4 0x55ca29 in Parse_InitExpr /root/source/m3_parse.c:282
         ......

 #8 0x55d715 in LLVMFuzzerTestOneInput /app_fuzz/fuzzer.c:30
         #9 0x552e14 in fuzzer::Fuzzer::ExecuteCallback (BuildId: f0fdeb36a)
         ......
         0x555bc18 is located 88 bytes after global variable c_operations
         SUMMARY: AddressSanitizer: global-buffer-overflow
         Shadow bytes around the buggy address:
         ......

Human Expert

                _throwif(unknownOpcode, opinfo == NULL);
                if (opinfo->compiler) {
                    (*opinfo->compiler) (o, opcode)

                 It appears that the overflow occurs in opinfo. 
                 I would like to locate the definition of opinfo.

                 The variable opinfo is defined at line 20 in 
                 the /source/m3_compile.c.

                To address the global overflow vulnerability in 
                the opinfo structure, you can introduce bounds
                checking before dereferencing.The patch ensure 
                that opinfo points to a valid memory location

    According to the address sanitizer report, a
    global overflow occurred at line 22 in the 
    /source/m3_compile.c. Let me view lines
    17 to 27 in /source/m3_compile.c.

    ....
    IM3OpInfo opinfo = GetOpInfo(opcode);
    _throwif(unknownOpcode, opinfo == NULL);
    if (opinfo->compiler) {
        (*opinfo->compiler) (o, opcode)
    ....

   `opinfo` is an overflow pointer generated by 
   GetOpInfo, I would like to locate its definition.

    The variable GetOpInfo is defined at line 5 in 
    the /source/m3_compile.c.

    Great, now I want to view lines 5 to 16 in
    /source/m3_compile.c 

   GetOpInfo(m3opcode_t opcode) {
       switch (opcode >> 8) {
        case 0x00: 
            return &c_operations[opcode]; ....

    The report indicates that the overflow occurred 
    in c_operations, so I need to add a boundary 
    check before performing pointer arithmetic.

               m3opcode_t opcode;
                 read_opcode(&opcode,&o);
                 IM3OpInfo opinfo = GetOpInfo(opcode);

                 Great, now I want to view lines 17 to 20 in
                 /source/m3_compile.c   

@@ -15,4 +15,8 @@ Compile_BlockStat

 m3opcode_t opcode;

 Read_opcode(&opcode, &o);

+if (opcode < 0 ||

+    opcode > MAX_OPCODE) {

+    return unknwonOpcode;

+}

 IM3OpInfo opinfo = GetOpInfo(...

 _throwif(unknwonOpcode,opinfo...

  

 

  @@ -4,7 +4,15 @@ GetOpInfo

   switch (opcode >> 8) {

  case 0x00:
  +if(opcode < sizeof(c_operations))

  +{

       return &c_operations[opcode];

  +}

  +break;

   case 0xFC:

   ...

Agent Patch Expert Patch

Figure 1: Comparison between vanilla agent and human expert vulnerability repair processes. The center part displays the
AddressSanitizer report alongside the patches generated by both human expert and vanilla agent. The left side illustrates the
repair process of vanilla agent, while the right side shows the repair process of human expert.

kens or words based on a given input. Their potential extends
beyond natural languages, showing significant proficiency in
code generation as well. Previous research has highlighted the
effectiveness of LLMs in aiding human developers by gener-
ating functional code and addressing security vulnerabilities
within software programs [14, 78, 83].

Without doubt, LLMs fit perfect well with APR and many
applications have been proposed. As a subset of ④ learning-
based patch generation techniques, LLM-based tools [38,102]
have outperformed other patch generators as reported in re-
cent surveys [33, 114]. On the fault localization (FL) front,
SemiAutoFL [60] focuses on LLM-based fault localization by
multiple interactions with LLMs. However, it is designed to
be semi-automated, and human efforts have to be introduced
during the repair process. This huge difference separates it
from our fully automated APR system. As for patch valida-
tion, researchers explore the possibility of introducing patch
validation feedback [41] into LLMs for improving APR.

However, instead of being a holistic APR tool, these LLM-
based tools mostly focus on using LLMs to implement one
component in the APR process. Pearce et al. [78] is an LLM-
based APR tool that integrates both patch generation and vali-
dation but lacks FL, as it relies on developer-provided patches
as an oracle for localizing the patch point. The corresponding
code is then fed to the LLM, and the patch is validated by
replaying the PoC and running a functional test suite. And
yet, this is the most closely related work in our PoC-driven
APR setting. Designing new APR workflow [107] without

fault localization (free-FL), under the assistance of LLMs, is
another potential way for APR. However, at this moment, we
are unable to compare with it because (1) Their workflow is
built for Java projects, which differs from our C/C++ targets.
(2) Currently, their project is not open-sourced.

3 Motivation: Human vs Vanilla LLM Agent

In this section, through a concrete example, we show that a
vanilla LLM agent that merely shadows the abilities of human
developers produce only substandard patches. This hints at
the importance of (subtle) human expertise in program repair
that are yet to be provisioned into the vanilla LLM agent.

3.1 Motivating Example
Issue-33078. Listing 1 presents an out-of-bound (OOB) ac-
cess bug that causes issue-33078 [35], which was discovered
by OSS-Fuzz [85]. The OOB access is flagged by Address-
Sanitizer [84] at line 22 in function Compile_BlockStat
when the OOB pointer opinfo is dereferenced. opinfo is
produced in function GetOpInfo, which fails to validate the
opcode properly—the root cause. However, AddressSanitizer
cannot flag the root cause because GetOpInfo does not deref-
erence opinfo. In fact, GetOpInfo does not even show up in
the call trace of the AddressSanitizer report (see Figure 1).
Repair by human. The process by which a human expert
repairs the vulnerability is illustrated in the right side of Fig-



Sanitizer Report
==35==ERROR: AddressSanitizer: global-bu�er-over�ow
READ of size 8 at 0x55bc18 thread T0
#0 0x55969b in Compile_BlockStat /source/m3_compile.c:22
......

Project Codebase
Source/

m3_compile.c

m3_parse.c
app_fuzz/

fuzzer.c

fuzzer.h

Initial input

LLM output

Environment
 output

Optimization 
component

①

①

Large Language Model

Environment

Language 
Server

FindDef

CounterExample

ChainCompress AutoCorrection

ReportPurify

Viewcode

Evaluate Patch
Generated Patch +8 -4

m3_compile.c

m3_parse.c

Patch Verifier

Patch 
Success!

Patch 
Failed

Optimization

② ③

④ ⑤

Figure 2: Overview of PATCHAGENT. The process begins with the sanitizer report and the project codebase (①). The LLM
retrieves the code context using the viewcode and find_definition APIs (②) and then generates a patch (③). The patch is
subsequently validated by the patch verifier (④). If the patch is incorrect, the agent will refine the patch or gather additional
context (⑤), iterating until a correct patch is generated or the budget is exhausted. The optimization components enhance the
agent’s capabilities, bringing it closer to the level of human expertise.

ure 1. ① The expert first identifies that the crash occurs at line
22 in m3_compile.c and proceeds to examine the code around
that line. ② After reviewing the code, the expert discovers
that the overflow is caused by dereferencing opinfo, which
is the return value of the function call to GetOpInfo. ③ The
expert then locates the definition of GetOpInfo and examines
the function body. ④ At this point, the expert notices in the
sanitizer report that the overflow occurs near global variable
c_operations, and more importantly, GetOpInfo returns a
pointer based on this variable. ⑤ This inspires the expert
to add a bounds check before performing the pointer arith-
metic as the patch. ⑥ After replaying the PoC and running
functional tests, the patch is deemed correct.

In this process, the human expert primarily relies on three
abilities that are natively built into LLM: comprehending
sanitizer report (in ①,④) and code (in ①,②,④), and generating
code (in ⑤), and uses three additional abilities: retrieve code
snippet (in ①, ③), locate a symbol’s definition (in ③), and
validate patch (in ⑥), to effectively complete the repair task.
Repair by a vanilla agent. To fairly compare how an LLM
agent patches a bug with the human approach, we developed
a vanilla agent equipped with the three additional abilities—
retrieving code snippets by range, locating a symbol’s defini-
tion, and validating a patch—by coupling a language server
and patch verifier to the agent (see §4.1 for details).

One sample run of the repair process by the agent is shown
on the left side of Figure 1. The agent identifies that the over-
flow occurs at line 22 in m3_compile.c but attempts to view
the surrounding code with a very narrow range. Consequently,
it does not directly find the definition of opinfo as a human
expert might. Instead, the agent first locates the definition
of opinfo and then examines the relevant code. Although
the agent successfully retrieves the definition of opinfo, it
fails to continue locating the definitions of the symbols on

which opinfo depends. Instead, it arbitrarily assumes that
the overflow is caused by the incorrect usage of opcode and
add a "boundary check" before GetOpInfo, leading it to gen-
erate an incorrect patch. After the patch validation fails, we
reset and rerun the agent, but it continues to generate similar
patches.

3.2 Reflection on Both Processes

Comparing the program repair processes by the vanilla LLM
agent and the human expert, we identified four challenges that
need to be addressed to elevate the vanilla agent’s capabilities
to a level approaching human expertise.

❶ Ineffective Ability Utilization: The vanilla agent struggles
with effectively utilizing the abilities at its disposal. In this
example, the agent consistently limits its attention to narrow
ranges of code snippets, costing it three rounds to fetch both
the crash site code and the definition of opinfo. In contrast,
the human expert adopts a broader perspective and gathers
the same information in a single round.

❷ Timing of Ability Application: The agent can not use abil-
ities at the appropriate time. In this example, after locating the
definition of opinfo, although the code indicates that opinfo
depends on GetOpInfo, the agent does not use the ability
to find the definition of GetOpInfo, leading to an incorrect
decision. In contrast, the human expert correctly identifies
this dependency and applies the ability at the right time to
obtain the necessary information.

❸ Report Comprehension: The sanitizer report highlights
that c_operations is a key variable, but the agent did not
mention this detail during the repair process. In contrast, the
human expert identifies its importance in the final step. This
oversight by the agent leads to an incomplete understanding
of the vulnerability.



❹ Lack of Variability: The agent lacks sufficient random-
ness in its approach, leading to repetitive and ineffective solu-
tions. When a new patching attempt is initiated, the previous
effort, including the reason for failure, is not taken into ac-
count.

While a more formal behavioral analysis might uncover
more gaps between human and the vanilla agent, we believe
these four issues could be a starting point for improvement.
To close the identified gaps, we design a series of interaction
optimizations to guide or restrict the behavior of the vanilla
agent, as detailed in §4.2. As an overview, we introduce a mid-
dleware that includes a report purifier, designed to transform
sanitizer reports into a format that can be easily processed
by the LLM. Additionally, the middleware monitors and ad-
justs the LLM’s use of its abilities. It can also collect the
failed patches generated by the LLM and provide feedback to
prevent repeated generation of similar patches to some extent.

4 The PATCHAGENT Design

In this section, we present the design of PATCHAGENT. We
start by outlining the basic framework (§4.1), followed by an
overview of its optimization components (§4.2). Finally, we
describe the prompt design (§4.3).

4.1 Framework

The overall framework of PATCHAGENT is illustrated in Fig-
ure 2. PATCHAGENT takes the sanitizer report and the project
codebase (①) as the input. The sanitizer report includes details
such as the bug type, stack trace, and other relevant informa-
tion, while the project codebase contains the project’s source
code. PATCHAGENT builds a language server for the code-
base to facilitate code retrieval and analysis and sets up the
runtime environment necessary for the patch verifier. The lan-
guage server is built on the Language Server Protocol (LSP),
a universal standard that supports over 50 languages. The
versatility of LSP is a key factor motivating PATCHAGENT to
adopt it.

The patch verifier ensures the correctness of the gener-
ated patch. In this work, we consider a patch correct if it
resolves bugs without disrupting functionality, as evaluated
by test suites rather than program equivalence. The verifier
applies the patch, checks for syntax errors, and determines
whether the vulnerability can still be triggered. It also runs all
functional tests to ensure functional integrity. For temporal
bugs, we observed that LLMs may address them by simply re-
moving the free operation, which prevents the sanitizer from
detecting the issue. However, this approach is generally unac-
ceptable in real-world scenarios. To avoid such problems, we
employed LeakSanitizer [5] to check for any additional mem-
ory leaks introduced post-patch. If such leaks are detected,
the patch is deemed invalid.

In each patch iteration, PATCHAGENT first analyzes the
sanitizer report and interacts with the project codebase (②)
to retrieve the relevant code context. Two retrieval APIs
are available for the LLM agent to invoke: viewcode and
find_definition. The viewcode API retrieves the code con-
text by specifying file names and line numbers, while the
find_definition API finds the definition location of symbols
by specifying their names and reference locations. Once suffi-
cient code context is retrieved, the agent generates a patch (③)
and invokes the validate API to check the patch’s correctness
(④). If the patch is incorrect, it will provide feedback to the
agent (⑤), and the agent will refine the patch (③) or retrieve
additional code context (②) that is necessary for the patch gen-
eration. This process repeats until a correct patch is produced
or the budget for each round is exhausted. PATCHAGENT con-
ducts multiple patch rounds with a positive temperature. The
agent is reset after each round, and the process continues until
the total budget is exhausted or a correct patch is found.

4.2 Incorporating Human Expertise

While the framework discussed so far outlines the basic work-
flow of PATCHAGENT, it does not fully address the challenges
mentioned in §3. To bridge this gap and incorporate human
expertise, we introduce several optimization components into
the agent, represented as the plugin object in Figure 2. These
components are designed to emulate the problem-solving
strategies of human expert, addressing the four challenges
identified earlier. Optimization comprises four key compo-
nents, each targeting a specific challenge.

1. Report Purification: This component tackles the chal-
lenge of Report Comprehension (❸). It transforms com-
plex sanitizer reports into a format that the LLM can
easily process, emulating how an experienced developer
would focus on and interpret key details from error re-
ports.

2. Chain Compression: Addressing the issue of Timing of
Ability Application (❷), this component helps the agent
make more optimal decisions about when and how to use
available abilities. It assists in identifying dependencies
and providing the necessary code context autonomously
for the LLM agent, much like how a human expert would
navigate through code relationships.

3. Auto Correction: This component addresses the chal-
lenge of Ineffective Ability Utilization (❶). It automati-
cally corrects ineffective or invalid ability usage, mim-
icking an expert’s proficiency in utilizing these abilities
correctly. By doing so, it prevents the LLM from re-
peatedly adjusting parameters when calling ability APIs.
This ensures that the LLM effectively uses these abilities
and retrieves the necessary information.

4. Counterexample Feedback: Even with restarting the
patching process, the agent may still generate similar in-
effective patches repeatedly without self-reflection. Ad-



dressing the Lack of Variability (❹) in the agent’s ap-
proach, this component makes the agent learn from past
attempts. It saves failed patches and provides feedback
to prevent the generation of similar ineffective patches
repeatedly, mimicking a developer’s ability to learn from
mistakes and vary their approach.

These components work in concert to enhance the agent’s
performance by incorporating human-like problem-solving
strategies. They form a series of interaction optimizations that
guide and restrict the behavior of the native agent, elevating
its capabilities to a level approaching human expertise. In §5,
we will delve deeper into each component, explaining how
they contribute to more effective program repair.

4.3 Prompt Design
The initial prompt includes both a system prompt and a user
prompt. The system prompt, which remains constant across
different repair tasks, provides a detailed overview of repair
tasks, explains how LLMs can interact with the environment,
and offers strategic suggestions for leveraging ability APIs.
The user prompt, tailored from specific vulnerability informa-
tion, is divided into three sections. The first section presents
the purified content of the sanitized report, ensuring that all
sensitive details are clarified. The second section provides
in-depth explanations related to the sanitized report, offering
additional context and insights. The final section includes
precise instructions for the LLMs to follow in repairing the
identified vulnerability.

5 Interaction Optimization

In this section, we introduce the optimization of the interac-
tion with LLMs, which plays an important role in improving
the repair performance of PATCHAGENT.

5.1 Report Purification
As we mentioned in §3, we identified issues when LLMs
process initial prompts that include sanitizer reports. These
reports often contain noisy symbols and complex information,
which can obscure key details and reduce the effectiveness of
the LLM. The report purification mechanism is designed to
streamline and clarify the information from the original report,
making it more suitable for LLM processing. Specifically, we
implemented a parser to transform the original report into a
concise and clear format. The parser first analyzes the report
to identify the attributes of each symbols. Next, it removes
unnecessary symbols, such as memory addresses, shadow
memory bytes, and symbols intended solely for human read-
ability. The parser then recalculates numerical data within
the report, such as access offsets and object sizes in out-of-
bounds bugs, to ensure accuracy and integrity. Additionally,
it appends clear and concise explanations for complex data

fields or technical terms, such as vulnerability types, stack
traces, and other critical details. Finally, the parser appends the
repair suggestions to the end of the report, thereby reducing
ambiguities and enhancing the clarity of sanitizer reports.

5.2 Chain Compression

Integrating an LLM with a language server enables the LLM
to analyze vulnerabilities in a manner similar to human de-
velopers. We expect PATCHAGENT to efficiently navigate
code, locate symbol definitions, and conduct thorough vulner-
ability analyses. Once the necessary information is gathered,
the LLM is expected to generate correct patches. However,
we have observed that LLMs may sometimes halt the code
retrieval process and stop interacting with the environment,
resulting in incorrect patches due to incomplete information.
This issue is particularly problematic for vulnerabilities in-
volving numerous code segments and variables, as the LLM
must gather complete information through multiple interac-
tions. The need for the LLM to gather comprehensive infor-
mation over several interactions introduces a long interaction
chain, increasing the complexity of decision-making. This
complexity can significantly reduce repair performance, espe-
cially in complex repair tasks, highlighting the importance of
optimizing the interaction process.

To address this problem, we employ chain compression to
optimize the interaction. We regard the interaction process as
a chain, with each round of interaction representing a node
on this chain. Each time, the LLM needs to infer the next
action based on the current information. By studying how
humans analyze vulnerabilities and observing the actions of
LLMs, we found that some inference steps are trivial and
can be handled by non-LLM algorithms. Chain compression
optimization will automatically detect if the current inference
step is trivial. If it is, the system bypasses the LLM, directly
generates and executes the next action, and returns all the
obtained information to the LLM. This approach compresses
multiple nodes on the chain of interaction into a single node.
From the perspectives of both the LLM and the environment,
the number of interaction iterations is reduced.

PATCHAGENT employs two types of predefined rules to
identify trivial inference steps: Dominator Action for de-
terministic scenarios and Heuristic Exploration for non-
deterministic ones. Here are the details of these two mecha-
nisms:

• Dominator Action: When LLMs need to retrieve com-
plete information, they may require multiple related ac-
tions. For example, after locating the definition of a vari-
able, the LLM may need to examine the associated code
or recursively identify other symbols that the variable
depends on to ensure the definition is comprehensive.
The initial action in this sequence is called the dominator
action, while all subsequent actions necessary to gather
complete information must be executed; otherwise, the



    if (info->compiler) {
        ((*info->compiler) (o));
    } else {
        Compile_Operator(o);
    }

viewcode
m3_compile.c:608

"info" is defined at
m3_compile.c:101

find_definition
info 

(m3_compile.c:608)

info = GetOpInfo(opcode);
if (info == NULL)
  throw UnknownCode;

viewcode
m3_compile.c:101

"GetOpInfo" is defined at
m3_compile.h:155

find_definition
GetOpInfo

(m3_compile.c:101)

➊

  Here is ASan Report:
   ERR: out-of-bounds
   foo (m3_compile.c:608)
   bar (m3_compile.c:206)
   zoo (m3_compile.c:980)
   ....

  Please repair the bugs.

➋ ➌

Initial Prompt

Figure 3: Example of Chain Compression. The LLM takes the initial prompt as input and starts interacting with the language
server. The black bold arrows illustrate the interaction without chain compression, while the black dashed arrows represent the
compressed interaction process. The original interaction chain of length four was compressed into a single interaction.

LLM can only obtain incomplete information. When
chain compression identifies an action as a dominator
action, it automatically generates and executes the sub-
sequent required actions, ensuring the LLM has access
to complete data.

• Heuristic Exploration: LLMs typically need to explore
various symbols (e.g., functions and variables) in the
codebase, requiring many interaction iterations. This
exploration helps LLMs gather contextual information
about vulnerabilities. To optimize this process, we de-
signed a heuristic exploration strategy to select these
symbols. We observed that symbols near the lines men-
tioned in the sanitizer report are chosen more frequently.
Therefore, after LLMs review a code snippet, our system
directly samples symbols near the lines mentioned in the
sanitizer report. The system then finds their definition
locations and returns this information to the LLM.

To better understand chain compression, we use Figure 3
to illustrate how the optimization works. The LLM takes
the initial prompt as input and starts interacting with the lan-
guage server. The actions taken by the LLM are shown in the
green box, while the responses from the language server are
displayed in the gray box. Without chain compression, the
LLM requires four iterations to gather the information dis-
played in the gray box, as indicated by the bold black arrows.
With the optimization applied, only one iteration is needed,
as shown by the dashed black arrows. The chain compression
mechanism is activated three times during this process.

❶ represents the Heuristic Exploration mechanism. Af-
ter the LLM sends a viewcode action, the mechanism deter-
mines that the crash is caused by the dereference of info
and the line where info located appears in both the viewed
code snippet and the sanitizer report. This indicates that it
is a valuable symbol to explore. Consequently, the chain
compression mechanism automatically triggers an additional

find_definition action to locate the definition of info. ❷ and
❸ represent the Dominator Action mechanism. Using only
the find_definition action to locate the definition of info is
insufficient to reveal its complete information. Therefore, the
mechanism first generates another viewcode action to obtain
the definition code snippet of info. Then, it identifies that the
variable relies on another symbol, GetOpInfo, and recursively
finds its definition location. To prevent infinite action gener-
ation, we set a maximum count for the chain compression
optimization.

5.3 Auto Correction
The LLMs need to frequently generate numbers to interact
with the environment, which usually involves calculations.
However, LLMs often struggle with numerical tasks and often
generate incorrect numbers. This can cause the environment
to deem the actions generated by LLMs as invalid, requiring
the LLMs to consume many iterations to fix the actions. While
prompt engineering can provide some improvement, we found
that this solution is not stable enough. Alternatively, we design
a correction mechanism for each action:
viewcode. The viewcode action requires the LLM to specify
both the filename and the range of code lines to be viewed.
We observed that LLMs usually provide a narrow range, lead-
ing the generated content to rely heavily on local information
while overlooking the broader context. To address this is-
sue, our system automatically expands the range whenever
it detects that the specified range is below a predetermined
threshold. For example, if the threshold is n and the range
provided by the LLM is [l,r) and r− l < n, the range will be
expanded to [l − n−(r−l)

2 ,r+ n−(r−l)
2 ).

find_definition. The find_definition action requires the LLM
to provide the row and column numbers corresponding to
the reference symbol. If LLMs fail to supply the exact num-



bers, the language server may consider it an invalid action.
Our observations indicate that LLMs tend to focus on sym-
bols appearing in the most recently viewed code and those
closely related to the vulnerability. Consequently, our correc-
tion algorithm operates based on this principle. It sequentially
examines the result code snippets from viewcode actions, start-
ing with the most recent and moving in reverse chronological
order. This backward traversal ensures that the most recently
viewed code snippets are analyzed first. Once the algorithm
detects the symbol in the currently examined code snippet, it
selects the reference locations closest to those provided by
the action. This approach is effective because, although an
entire codebase may contain many symbols with the same
name but different definitions, it is uncommon for a single
code snippet to have multiple definitions of the same symbol.
Therefore, the algorithm can almost always correctly identify
the symbol that the LLM intends to locate.
validate. The validate action requires LLMs to provide
patches in a multi-hunk format [33], which includes the line
numbers of the modified lines. Incorrect line numbers pre-
vent the patch from being applied to the source code. To ad-
dress this, we observed that the redundant information within
the multi-hunk patch offers the potential for error correction.
Specifically, each hunk in the patch presents the modified code
lines with unchanged contextual lines to help users understand
their placement within the file. Consequently, we designed an
algorithm based on the minimal edit distance [88] to correct
errors in line numbers and contextual lines. The algorithm
fixes each hunk in three steps: ❶ Scans all unchanged and
deleted lines, merging them into the original code snippet. ❷
Calculates the edit distance between the original code snippet
and possible code ranges in the changed file, selecting the
range with the minimal edit distance. If multiple ranges have
the same edit distance, the algorithm chooses the range closest
to the one originally indicated by the patch. ❸ Corrects the
contextual lines based on the selected code range and updates
the line numbers in the patches. This approach allows for effi-
cient error correction in patches without requiring complete
regeneration by LLMs.

5.4 Counterexample Feedback

The workflow of PATCHAGENT runs multiple patch rounds
until the system found the correct patch, relying on the LLM’s
ability to generate diverse patches each round. However, even
with the temperature set to 1 (indicating a higher probability
of varied output), the LLM might still produce patches with
similar logic across different rounds. This issue demonstrates
the lack of ability of LLMs to self-reflect and improve their
performance within multiple rounds. We demonstrate this is-
sue in Listing 2, where the original code bug arises from mis-
handling a null pointer. Specifically, the program attempts to
pass t->text, which may be null, to the gf_strdup function,
which cannot handle null inputs, resulting in a null pointer

1 if (t) {
2 time[i] = (u32) s->DTS;
3 - name[i] = gf_strdup(t->text);
4 + if (t->text)
5 + name[i] = gf_strdup(t->text);
6 + else
7 + name[i] = NULL;
8 gf_isom_delete_text_sample(t);
9 }

10

11 if (t) {
12 time[i] = (u32) s->DTS;
13 - name[i] = gf_strdup(t->text);
14 + name[i] = t->text ? gf_strdup(t->text): NULL;
15 gf_isom_delete_text_sample(t);
16 }
17

18 if (t) {
19 time[i] = (u32) s->DTS;
20 - name[i] = gf_strdup(t->text);
21 + name[i] = gf_strdup(t->text ? t->text : "");
22 gf_isom_delete_text_sample(t);
23 }

1 memset(&tx, 0, sizeof(tx));
2 tx.text = p2->value.name[i];
3 tx.len = (u32) strlen(p2->value.name[i])+1;
4 samp = gf_isom_text_to_sample(&tx);

Listing 2: Example of Counterexample Feedback.

dereference when accessing the string. The first two patches
address the bug by adding checks to ensure t->text is not
null before calling gf_strdup. The first patch uses an if-else
structure: if t->text is not null, it duplicates the text; other-
wise, it sets name[i] to NULL. The second patch uses a ternary
operator to achieve the same logic. Both patches set name[i]
to NULL, which poses a potential issue since name[i] is re-
quired to remain non-null in other parts of the program. This
is evident in the second code snippet in Listing 2, where
name[i] is passed directly to the strlen function without
any null checks. Similar patterns are observed throughout the
codebase, suggesting that numerous null checks would need
to be added to ensure the program’s correctness if we were to
follow the logic of the first two patches. This could make the
patch overly complex and introduce redundancy.

In our experiments, we consistently observed that LLMs
tend to generate similar patches, like the first two incorrect
examples, when the workflow is run repeatedly with little
variation between rounds. This pattern likely arises because
adding a null check is a common real-world fix for null pointer
issues, leading the LLM to heavily favor this approach. To
guide the LLM to generate the correct patch, as shown by the
third patch in Listing 2, the solution assigns an empty string
to name[i] instead of NULL when t->text is null. We intro-
duce a counterexample feedback mechanism, where patches



Model Temporal Error Spatial Error Null Dereference Numeric Error Total

GPT-4o 13/23 (56.52%) 96/125 (76.80%) 23/23 (100.00%) 7/7 (100.00%) 139/178 (78.09%)
GPT-4 Turbo 11/23 (47.83%) 87/125 (69.60%) 21/23 (91.30%) 7/7 (100.00%) 126/178 (70.79%)

Claude-3 Opus 14/23 (60.87%) 108/125 (86.40%) 22/23 (95.65%) 7/7 (100.00%) 151/178 (84.83%)
Claude-3 Sonnet 8/23 (34.78%) 77/125 (61.60%) 17/23 (73.91%) 6/7 (85.71%) 108/178 (60.67%)
Claude-3 Haiku 9/23 (39.13%) 93/125 (74.40%) 19/23 (82.61%) 7/7 (100.00%) 128/178 (71.91%)

Union 20/23 (86.96%) 114/125 (91.20%) 23/23 (100.00%) 7/7 (100.00%) 164/178 (92.13%)

Table 1: Effectiveness Comparison of Vulnerability Repair Across Various Models. This table compares the effectiveness of
PATCHAGENT when utilizing different LLMs to repair vulnerabilities. The results are classified into four main types of errors:
Temporal Errors (including stack overflow, global overflow, and heap overflow), Spatial Errors (including use-after-free,
double free, and invalid free), Null Dereference, and Numeric Errors (including integer overflow and division by zero). The
Union row represents the combined results of PATCHAGENT across all models, demonstrating the overall improvement in repair
accuracy achieved through the collaborative use of multiple models.

that fail validation are treated as counterexamples. This mech-
anism samples counterexamples after the first workflow itera-
tion and includes them in subsequent prompts, instructing the
LLM not to generate similar patches again. This method en-
sures the LLM is aware of its previous shortcomings, prevent-
ing it from repeatedly generating similar, ineffective patches.
By integrating these counterexamples into the prompt, we
encourage the LLM to explore a broader range of solutions,
increasing the likelihood of producing a correct patch.

6 Implementation

We implemented PATCHAGENT using LangChain [43] to
facilitate the integration of LLM and prompt engineering.
Below, we provide an overview of the environment support.

Language Server. The language server front-end is based on
the Language Server Protocol (LSP) [71], while the back-end
utilizes clangd. We employ a customized compiler wrapper to
collect the compilation commands for each project, which are
then used to initialize the clangd server. Upon receiving an
action command from the LLMs, we generate an LSP packet
containing all pertinent details and transmit it to the clangd
server. The clangd server processes the request, allowing the
LLMs to perform a thorough analysis of the codebase.

Patch Verifier. The patch verifier begins by applying the pro-
posed patch to the program and compiling the modified code
to ensure that no errors are introduced during the patching
process. Upon successful compilation, the verifier replays the
PoC to confirm that the identified security vulnerability has
been effectively addressed. If the patch passes the security
tests, the verifier then runs a series of functional tests within
the program to ensure that the patch does not inadvertently
disrupt any other functionality.

7 Evaluation

In this section, we assess PATCHAGENT with the following
research questions.

• RQ 1: How effectively can PATCHAGENT repair vulner-
abilities in real-world programs? (§7.2)

• RQ 2: What is the impact of individual interaction opti-
mization mechanisms on repair performance? (§7.3)

• RQ 3: How does PATCHAGENT perform when repairing
vulnerabilities that LLM has never seen before? (§7.4)

• RQ 4: How efficient is PATCHAGENT in repairing vul-
nerabilities? (§7.5)

Additionally, we present and analyze several case studies
in §A.1 to offer a comprehensive understanding of the effec-
tiveness and limitations of PATCHAGENT.

7.1 Setup
Hardware Environment. All experiments were conducted
on an AMD EPYC 7763 64-core processor running at 2.445
GHz with 512 GB of RAM and 15 TB of SSD storage.
Large Language Model. The large language models used in
the experiment include GPT-4 Turbo and GPT-4o from Ope-
nAI, as well as Claude-3 Opus, Claude-3 Sonnet, and Claude-
3 Haiku from Anthropic. The specific versions were gpt-4-
0125-preview, gpt-4o-2024-05-13, claude-3-opus-20240229,
claude-3-sonnet-20240229, and claude-3-haiku-20240229,
respectively.
Dataset. We select 178 vulnerabilities from 30 programs,
covering 9 distinct bug types: stack overflow, heap overflow,
integer overflow, use-after-free, double free, global overflow,
divide by zero, invalid free, and null dereference. Of these, 28
vulnerabilities are sourced from ExtractFix [24]. We excluded
two ffmpeg cases from the original 30 ExtractFix examples
due to reproducibility issues stemming from outdated code.
The remaining 150 cases were collected from OSS-Fuzz [85]
and Huntr [34]. We manually collected both security and



functional test scripts for all cases, ensuring that our patch
verifier can validate that the generated patches meet both
security and functional requirements.

Notably, no existing datasets provide verifiers for both se-
curity and functional tests. For example, only a subset of
test cases in Magma [29] and FixReverter [116] are repro-
ducible, while CGC [18] can reproduce all cases but does not
include functional test scripts. To emphasize the effectiveness
of PATCHAGENT on various complex vulnerabilities, we have
detailed all relevant sample information of the dataset in §A.3.
Evaluation Criteria. In our evaluation, we primarily com-
pare our approach with ExtractFix [24] and a zero-shot
method based on LLMs proposed by Pearce et al. [78]. While
attempting to reuse the ExtractFix code on 150 cases from
OSS-Fuzz and Huntr, we encountered compatibility issues
due to the outdated nature of the code, which prevented it from
functioning with the current version. We have confirmed this
limitation with the authors. Consequently, our comparison
with previous work is limited to 28 cases from ExtractFix.

We also do not compare PATCHAGENT with zero-shot
methods [78] or other related works [96, 103, 104] because
they require accurate fault localization results, which are not
available in our dataset. Additionally, it is non-trivial to adapt
PATCHAGENT to fit the settings of these methods, as PATCHA-
GENT does not take fault localization results as input; it only
utilizes the corresponding report and codebase.

For each case and configuration combination, including
experiments in the ablation study, we will ensure that the
generated patch passes both security and functional tests. Ad-
ditionally, we will run our system through 15 iterations to
minimize the impact of randomness. Since ExtractFix did
not perform functional tests in their original evaluation, we
manually ran their patches through our functional scripts to
ensure proper handling.

7.2 Effectiveness of PATCHAGENT

Table 1 provides a comprehensive comparison of PATCHA-
GENT’s effectiveness in repairing vulnerabilities across differ-
ent large language models. The vulnerabilities are classified
into four main error types based on their nature and the suc-
cess rate of repair: Temporal Error, Spatial Error, Null
Dereference, and Numeric Error. These categories encom-
pass nine specific bug types: use-after-free, double free, and
invalid free (under Temporal Error); stack overflow, global
overflow, and heap overflow (under Spatial Error); null deref-
erence (under Null Dereference); and integer overflow and
division by zero (under Numeric Error). The table details
the number and percentage of vulnerabilities successfully re-
paired by PATCHAGENT for each error type across various
models. The Union row aggregates the results from all mod-
els, showcasing PATCHAGENT’s repair performance through
the collaborative use of multiple models.

From Table 1, we can find that PATCHAGENT delivers

Prog. CVE/Issue Bug Type E.F. Z.S. P.A.

binutils CVE-2017-15025 Divide By Zero  /  
binutils CVE-2018-10372 Heap Overflow G# /  
coreutils GNUBug 19784 Heap Overflow # /  
coreutils GNUBug 25003 Heap Overflow  /  
coreutils Bugzilla 26545 Heap Overflow  /  
coreutils Bugzilla 25023 Global Overflow # /  
jasper CVE-2016-8691 Heap Overflow  /  
jasper CVE-2016-9387 Integer Overflow  /  
libjpeg CVE-2018-19664 Heap Overflow #   
libjpeg CVE-2017-15232 Null Dereference  /  
libjpeg CVE-2012-2806 Stack Overflow # #  
libjpeg CVE-2018-14498 Heap Overflow G# /  
libtiff CVE-2016-5321 Heap Overflow    
libtiff CVE-2017-7595 Divide By Zero    
libtiff CVE-2017-7601 Integer Overflow    
libtiff CVE-2016-9273 Heap Overflow # /  
libtiff CVE-2016-10094 Heap Overflow G#   
libtiff CVE-2014-8128 Heap Overflow  #  
libtiff Bugzilla 2611 Divide By Zero  /  
libtiff CVE-2016-5314 Heap Overflow # /  
libtiff CVE-2016-3186 Heap Overflow  /  
libtiff CVE-2016-3623 Divide By Zero    
libtiff Bugzilla 2633 Heap Overflow G# /  
libxml2 CVE-2017-5969 Null Dereference  #  
libxml2 CVE-2012-5134 Heap Overflow    
libxml2 CVE-2016-1834 Heap Overflow  /  
libxml2 CVE-2016-1838 Heap Overflow G#   
libxml2 CVE-2016-1839 Heap Overflow # /  

Table 2: Comparison of vulnerability repair results be-
tween ExtractFix (E.F.), Zero-Shot (Z.S.), and PATCHA-
GENT (P.A.).  indicates that the patch successfully fixed the
vulnerability and passed the functional test.G# denotes a patch
that fixed the bug but failed the functional tests. # represents
a patch that failed to fix the bug. For cases where results are
unavailable, a ’/’ is used to denote this.

strong performance across all bug types by leveraging diverse
models, excelling particularly in numeric errors and null deref-
erence with a perfect 100% success rate. For temporal and
spatial errors, the success rates are slightly lower, at 86.96%
and 91.20%, respectively. These outcomes are consistent with
previous studies [24,31,33,105], which suggest that most null
dereference and numeric errors can often be resolved with a
simple if-check, whereas temporal and spatial bugs typically
require more complex solutions. Across individual models,
the repair performance for different bug types closely mir-
rors the trends observed in the union row, with higher success
rates for null dereference and numeric errors compared to tem-
poral and spatial errors. On the full dataset, Claude-3 Opus
stands out with the highest repair rate, successfully address-
ing 84.83% of the total vulnerabilities. GPT-4o also performs
impressively, achieving a 78.09% repair rate. GPT-4 Turbo
and Claude-3 Haiku demonstrate comparable effectiveness.



Configuration Spatial Temporal Other Total

Disable RP 63.64% 27.27% 88.89% 64.00%
Disable CC 60.00% 36.36% 88.89% 62.67%
Disable AC 41.82% 9.09% 55.56% 38.67%
Disable CF 65.45% 54.54% 100.00% 70.67%

PATCHAGENT 72.73% 63.64% 100.00% 77.33%

Table 3: Ablation Study of PATCHAGENT. Based on GPT-
4o (RP: Report Purification, CC: Chain Compression, AC:
Action Correction, CF: Counterexample Feedback), Other
include both null dereference and numeric errors.

In contrast, Claude-3 Sonnet lags behind, with a significantly
lower repair rate of 60.67%.

Table 2 presents a comparative analysis of vulnerability
repair results among three approaches: ExtractFix (E.F.) [24],
LLM-based Zero-Shot (Z.S.) [78], and PATCHAGENT (P.A.).
The results clearly indicate that PATCHAGENT outperforms
the other two methods in almost all the listed vulnerabilities.
Specifically, PATCHAGENT successfully fixed the vulnera-
bility and passed the functional test in all cases. In contrast,
ExtractFix and Zero-Shot show mixed results, with many in-
stances of #, indicating failed fixes, or G#, indicating fixes
that failed functional tests. This comparison underscores the
superiority of PATCHAGENT in effectively patching vulnera-
bilities while maintaining functional correctness, making it
the most reliable approach among the three.

To better understand the unique contributions of each
model, we analyzed the number of vulnerabilities each one re-
paired that others could not. Our findings indicate that Claude-
3 Opus had the highest number of unique repairs, addressing
7 vulnerabilities that no other models could fix. In contrast,
Claude-3 Sonnet did not contribute any unique repairs, while
GPT-4o, GPT-4 Turbo, and Claude-3 Haiku demonstrated 3,
1, and 1 unique repairs, respectively. During the effectiveness
evaluation, PATCHAGENT generated 33,336 incorrect patches.
Among these, 45.02% failed due to syntax errors, 49.22% did
not pass the security test, and 5.76% failed to pass functional
tests, highlighting the importance of functional tests.

7.3 Ablation Study
To evaluate the impact of our key idea, applying multiple
interaction optimizations for LLM, we conducted an abla-
tion study. In this study, we systematically deactivated each
optimization within PATCHAGENT, focusing on report purifi-
cation (RP), chain compression (CC), auto correction (AC)
and counterexample feedback (CF). We sampled 75 cases,
primarily due to the high cost associated with running the
full dataset. Running these 75 cases alone costs over $1500,
highlighting the financial constraints. This approach is also
consistent with previous best practices [110]. Furthermore, we
ensure that the distribution of vulnerability types in the sam-

CVE/Issue Project Bug Type Fix Date P.A.
2024-6064 [70] gpac Use After Free Jun. 13rd ✓

2024-27530 [94] wasm3 Use After Free N/A ✓

2024-41965 [68] vim Double Free Aug. 1st ✓

2024-3204 [63] c-blosc2 Heap Overflow Apr. 4th ✓

2024-34459 [67] libxml2 Heap Overflow May 8th ✓

2024-34249 [65] wasm3 Heap Overflow N/A ✓

2024-34252 [66] wasm3 Global Overflow N/A ✓

Issue-471 [74] wasm3 Heap Overflow N/A ✗

2024-6063 [69] gpac Null Dereference Jun. 12nd ✓

2024-34246 [64] wasm3 Null Dereference N/A ✗

Table 4: Summary of unseen vulnerability repair results.
P.A. indicates the repair result of PATCHAGENT (Based on
GPT-4 Turbo). The Fix Date represents the date when the
patch was applied, with all dates in 2024. Data are current as
of August 22nd, 2024.

pled cases is consistent with the original dataset. The result is
shown in Table 3, we illustrate the impact of each optimiza-
tion component by examining the repair ratios across three
categories: Spatial, Temporal, and Other, which include null
dereference and numeric errors. The complete PATCHAGENT
system achieved a repair ratio of 77.33%.

When report purification (RP) was disabled, the overall
repair ratio dropped significantly to 64.00%, with a marked
decline in effectiveness across all bug types, particularly in
Temporal errors, where the ratio fell to 27.27%. This high-
lights the crucial role RP plays in refining reports. Disabling
counterexample feedback (CF) also led to a decreased overall
repair ratio of 70.67%. The CF component proved essen-
tial for handling Temporal errors, reducing the repair ratio
from 63.64% to 54.54%. Turning off chain compression (CC)
resulted in a drop in the repair ratio to 62.67%, with a no-
table impact on Spatial errors, where the ratio decreased from
72.73% to 60.00%. Disabling auto correction (AC) caused
significant degradation, as without this optimization, we ob-
served that the LLM even struggled to generate correctly
formatted patches.

7.4 Repair Unseen Vulnerability
To assess PATCHAGENT’s capability in repairing vulnerabili-
ties that LLMs have never encountered before, we collected
10 newly discovered vulnerabilities spanning 5 different bug
types across 5 distinct projects: (1) c-blosc2 [2], a fast bi-
nary compressor; (2) GPAC [27], a multimedia framework; (3)
libxml2 [9], an XML toolkit library; (4) wasm3 [3], a We-
bAssembly interpreter; and (5) vim [95], an improved version
of the UNIX editor Vi. These cases were selected based on the
following criteria: (1) the vulnerabilities were reproducible
and disclosed in 2024; and (2) the projects have functional
tests. We utilized the GPT-4 Turbo-based system, PATCHA-



Model Avg. Token Avg.
$ Cost % Repaired# Input # Output

GPT-4o 234,533 38,331 $1.75 78.09%
GPT-4 Turbo 89,856 13,005 $1.29 70.79%
Claude-3 Opus 83,051 12,111 $2.15 84.83%
Claude-3 Sonnet 180,944 18,574 $0.82 60.67%
Claude-3 Haiku 254,609 26,476 $0.10 71.79%

Union 842,993 108,498 $6.11 92.13%

Table 5: Token & Money Cost of PATCHAGENT under
Different LLM.

0 5 10 15 20 25 30 35 40 45 50
Average Time (min)

Claude-3 Haiku

Claude-3 Sonnet

Claude-3 Opus

GPT-4 Turbo

GPT-4o

validate model find_definition viewcode

Figure 4: Average Time Cost of PATCHAGENT.

GENT, specifically the gpt-4-0125-preview version, to repair
these vulnerabilities. According to the OpenAI API documen-
tation [73], the training data of this model includes informa-
tion only up to December 2023. Consequently, the patches
for these vulnerabilities are not part of gpt-4-0125-preview’s
training dataset. This allows us to evaluate PATCHAGENT’s
ability to repair newly discovered vulnerabilities without con-
cerns about prior knowledge or memorization of the patches.

The results are summarized in Table 4, demonstrating that
PATCHAGENT successfully repaired 8 out of 10 previously
unseen vulnerabilities. These findings align with the effec-
tiveness evaluation discussed in §7.2. We note that PATCHA-
GENT failed to repair CVE-2024-34246, a null dereference
bug. Given PATCHAGENT’s otherwise perfect performance in
repairing null dereference bugs during the effectiveness eval-
uation, we will conduct an in-depth analysis of this failure in
§A.1. For another null dereference bug, PATCHAGENT effec-
tively repaired it by inserting a null check. For three temporal
memory bugs, PATCHAGENT successfully repaired two by
inserting validity checks and mitigated the risks of the third
by nullifying the dangling pointer. For spatial memory bugs,
the generated patch recalculated the object size, performed ad-
vance checks, and added error handling code when necessary.
We plan to manually review and measure these patches gen-
erated by PATCHAGENT. Once verified to avoid unexpected
outcomes, we submit PRs and maintain ongoing communica-
tion with developers. The PRs that received responses from
maintainers are summarized in A.2.

7.5 Efficiency of PATCHAGENT

Token Cost. Table 5 summarizes the average cost of suc-
cessfully repairing a vulnerability using different models.
Claude-3 Opus achieves the highest repair success rate at
84.83%. However, it also incurs the highest average cost per
task at $2.15. Claude-3 Haiku offers the most cost-effective
solution at $0.10 per task, though with a lower repair rate of
71.79%. GPT-4o and GPT-4 Turbo present different trade-
offs, with GPT-4o using significantly more tokens (234,533
input, 38,331 output) compared to GPT-4 Turbo (89,856 in-
put, 13,005 output), resulting in a higher cost ($1.75 vs $1.29)
but also a better repair rate (78.09% vs 70.79%). Claude-3
Sonnet falls in the middle range, repairing 60.67% of vulner-
abilities at $0.82 per task. The combined use of all models
yields a substantial 92.13% repair rate. In the worst scenario,
to achieve such a high repair rate, we would need to run
each case through all models, which would cost $6.11. How-
ever, we believe that this cost can be reduced through model
scheduling. We will consider this as a potential area for future
work.
Time Cost. Figure 4 presents a detailed breakdown of the
average time costs associated with PATCHAGENT when using
different models. The time costs are divided into several sub-
categories: validate, viewcode, find_definition, and the Model
component. They represents the time spent on validating the
patch, viewing the code, finding the definition, and coummu-
nicating with the LLM, respectively. As for overall repair time
(the total time across the four subcategories), GPT-4 Turbo
is the fast, only 28.7 minutes, while the other three models
take approximately 45 minutes. This suggests that GPT-4
Turbo may be a preferred choice for time-sensitive program
repair tasks. Analyzing the time distribution among the sub-
categories, for all models, the validate accounts for between
74% and 82%, followed by the model time which is between
17% and 27%, viewcode is around 1%, and find_definition is
lower than 0.7%. Notably, across all models, the majority of
the time is spent in the validate. Optimizing the time spent on
validate could be a key focus of our future work.

8 Discussion and Limitation

Scope & Generalization. The current evaluation demon-
strates PATCHAGENT’s repair performance for C/C++ pro-
grams. We focus exclusively on C/C++ because memory
errors in these programs represent some of the most preva-
lent and dangerous vulnerabilities. According to statistical
data reported by Google [26], approximately 70% of high-
severity bugs are memory errors, often resulting from issues
with C/C++ pointers. It is also worth noting that a signifi-
cant body of research [49, 50, 53, 113] has proposed various
methods to manipulate memory and compromise real-world
programs. Moreover, by analyzing critical control information
and structures [15,48,99], researchers have explored the auto-



generation of exploitation code, leading to outcomes such
as denial-of-service (DoS), information leaks, and privilege
escalation. Consequently, we chose C/C++ as the initial tar-
get for PATCHAGENT. However, We believe PATCHAGENT
can handle various types of vulnerabilities and languages.
Supporting new languages only requires replacing the LSP
(a universal protocol for 50+ languages) backend. In fact,
the versatility of LSP is why PatchAgent uses it. Supporting
new vulnerability types requires implementing new parsers
to purify vulnerability-specific reports.
Limited Validation. Our patch validation method employs
security and functional tests, a widely adopted practice in
software development, such as github CI [25]. While this
method is effective and scalable for addressing many vul-
nerability repair scenarios, it has notable limitations. From
a security standpoint, prior works [100] have revealed that
approximately 5% of security patches written by human in the
Linux kernel may not fully mitigate the vulnerabilities they
aim to address, which suggests that patches generated by AI
agents may also contain similar issues. Regarding functional-
ity, some projects often update or expand their test cases along-
side patches, which hints that simply using existing functional
tests may not be sufficient. Additionally, patch correctness is
influenced by factors beyond security and functionality, such
as performance optimization, system compatibility, long-term
maintainability, and specific requirements of downstream ap-
plications or users. These additional considerations highlight
the complexity of comprehensive patch validation. While our
approach provides a solid foundation, we acknowledge that it
may not capture all critical aspects, underscoring the need for
complementary methods and more holistic evaluation frame-
works in certain contexts. We will consider these aspects in
future work.
Future Improvement. To enhance the overall performance
of PATCHAGENT, we recommend focusing on research in
patch validation and semantic extraction. Current validation
methods may yield false negatives, and fuzzing remains a
primary method for vulnerability discovery. Therefore, we
propose leveraging LLMs to analyze patches and synthesize
specialized seeds for fuzzing. Recent work [19, 56, 101] has
demonstrated that LLMs can provide more efficient mutations,
enhancing vulnerability detection capabilities. A significant
challenge in patch functional validation is the often poorly
defined expectations of program functions, which hampers
comprehensive functional testing. A potential solution is to
incorporate LLMs into the development workflow [83], using
them to generate functional tests that ensure every line of
code is covered. With more functional test cases during the
patch validation stage, the likelihood of detecting incorrect
yet plausible patches increases. Additionally, if LLMs can
accurately understand the semantic intent of the code, they
are more likely to generate correct and elegant patches. Fine-
tuning [14] is a promising approach. By training an LLM for
a specific type of application, we can enhance its understand-

ing of particular types of programs, thereby improving patch
generation and overall system performance.

9 Related Work

Vulnerability Mitigation. In addition to addressing vulnera-
bilities in source code, numerous prior works have mitigated
the impact of specific vulnerabilities through memory defense
mechanisms, particularly in defending against temporal and
spatial memory vulnerabilities. For temporal vulnerabilities,
methods such as garbage collection based [7, 22] and pointer
invalidation [47, 51] have been employed to clear dangling
pointers, while one-time allocators [98, 109] have been used
to prevent memory reuse. Regarding spatial memory vulner-
abilities, prior works [21, 61, 112] typically involve storing
additional metadata and instrumenting the program to insert
boundary-checking instructions. However, these methods gen-
erally ensure only that the program is not exploitable, leaving
the potential for attackers to still conduct DoS attacks.
LLM for Code. The use of LLMs in code-related tasks has
gained significant attention in recent years. One important do-
main for code tasks is resolving functional issues. Devin [6]
pioneered the use of LLMs in resolving functional issues by
deconstructing user requirements and employs various tools
to accomplish the task. Notably, it was the first to achieve
over a 10% success rate on SWE-bench [37]. Following this,
SWE-Agent [110] and AutoCodeRover [115] adopted a simi-
lar design, enabling effective interaction with the codebase to
address issues. These agents are primarily focused on resolv-
ing functional issues in Python programs, while our work is
centered on repairing the security vulnerabilities of programs
written in low-level languages. Another important application
is vulnerability detection [20, 90]. By analyzing the target
function, LLMs can identify patterns of vulnerabilities. Code
generation [42, 75] is also an important application of LLMs.
This task is particularly valuable for modernizing legacy sys-
tems and integrating software components written in different
languages.

10 Conclusion

In this work, we introduced PATCHAGENT, an APR tool de-
signed to automate the end-to-end process of repairing vul-
nerabilities in real world programs. Using the capabilities of
LLMs and enhancing them with specialized modules for fault
localization, patch generation, and validation, PATCHAGENT
is able to emulate the decision-making process of human ex-
perts. The interaction optimizations further bolster the agent’s
ability to generate accurate and diverse patches. Our extensive
evaluation on a diverse dataset of real-world vulnerabilities
demonstrated that PATCHAGENT achieves superior perfor-
mance compared to existing APR tools, successfully repairing
a significant majority of vulnerabilities with high accuracy.



Ethics Considerations

In developing PATCHAGENT, an LLM-based agent designed
to repair software vulnerabilities, we took careful consider-
ation of ethical guidelines and compliance standards. The
system was developed and tested in a controlled environment,
specifically on a private server, ensuring that no unautho-
rized data or external systems (other than the LLM service
providers) were involved in the process. At the dataset level,
we collect the cases from open-source projects, which ensures
the transparency and accessibility of all test cases.

The primary function of PATCHAGENT is to enhance
software security by automatically repairing vulnerabilities,
which inherently aligns with ethical goals of improving cyber-
security and protecting users from potential harm. We ensured
that the agent operates within a defined scope, with no capa-
bility to perform actions outside its intended purpose, thus
minimizing any risk of unintended consequences. Throughout
the development and experimentation phases, all activities ad-
hered to established ethical standards and legal requirements,
confirming that our work does not violate any regulations or
ethical principles.

Open Science

To facilitate reproducibility and transparency, we will pub-
lish our dataset and source code alongside our paper at
https://osf.io/8k2ac. Additionally, to enable others to
reproduce our results more conveniently, we plan to release
our detailed running logs. These logs will include all rele-
vant data presented in Table 1, Table 2, Table 3, and Table 5.
By providing comprehensive logs, we aim to ensure that re-
searchers can validate our findings, build upon our work, and
benchmark their approaches using our results.
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1 _onfatal:
2 if (result) {
3 fprintf (stderr, "Error: %s", result);
4 if (runtime)
5 {
6 M3ErrorInfo info;
7 m3_GetErrorInfo (runtime, &info);
8 if (strlen(info.message)) {
9 fprintf (stderr, " (%s)", info.message);

10 }
11 }
12 fprintf (stderr, "\n");
13 }
14 m3_FreeRuntime (runtime);
15 m3_FreeEnvironment (env);

Listing 3: Code Snippet of CVE-2024-34246.

1 else {
2 if (MRB_METHOD_NOARG_P(m)) {
3 check_method_noarg(mrb, ci);
4 }
5 recv = MRB_METHOD_FUNC(m)(mrb, recv);
6 }

Listing 4: Code Snippet of CVE-2022-1286.
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A Appendix

A.1 Case Studies

In this section, we present three case studies: one case (Issue-
2057 [93]) that PATCHAGENT successfully repaired, and two
cases (CVE-2024-34246 [64], CVE-2022-1286 [62]) that
PATCHAGENT was unable to address.
Issue-2057. Issue-2057 is a use-after-free bug in the gpac
project. This bug arises from the lifecycle management of
objects in the struct list codec->QPs, which involves multi-
ple references. The victim object within codec->QPs can be
accessed through various references. When the status of the
victim object changes, such as transitioning from allocated
to de-allocated, it is critical to synchronize its status across
all references to prevent inconsistent behavior. In this case,
when the victim object is freed via reference A, subsequent
operations continue to use reference B to interact with the
victim object. PATCHAGENT successfully identifies the po-
tential relationships between these different references and
inserts multiple checks across three different functions to
ensure the validity of those references. If a reference fails
validation, PATCHAGENT returns null or error codes to notify
upper-level functions of the latent error.



Project Issue ID Bug Type Status

assimp 5763 Heap Overflow ✓ Merged
assimp 5764 Stack Overflow ✓ Merged
assimp 5765 Null Dereference ✓ Merged
hdf5 5201 Heap Overflow ✓ Merged
hdf5 5202 Heap Overflow ◆ Open
hdf5 5209 Heap Overflow ◆ Open
hdf5 5210 Heap Overflow ✓ Merged
libredwg 1061 Use After Free ✓ Merged
Pcap++ 1678 Heap Overflow ◆ Open
Pcap++ 1680 Heap Overflow ✓ Merged

Table 6: Github Pull Requests.

Range Prop (%) Range Prop (%)

< 400 22.46% 1600–3200 20.79%
400−800 30.90% 3200–6400 7.30%
800−1600 17.98% > 6400 0.56%

(a) Related Lines of Code (RLOC)

Range Prop (%) Range Prop (%)

< 16 29.78% 26–30 12.36%
16–20 15.73% 31–35 8.99%
21–25 11.24% > 35 21.92%

(b) Backtrace Depth at Crash Site

Range Prop (%) Range Prop (%)

< 105 0.57% 107 −108 67.05%
105 −106 1.14% 108 −109 27.27%
106 −107 0.57% > 109 3.41%

(c) Instruction Number of Trace

Table 7: Dataset Complexity Metrics.

CVE-2024-34246. The code snippet relevant to CVE-2024-
34246 is presented in Listing 3. The sanitizer flags a null
dereference at line 8, where info.message is a null pointer,
leading to an error when strlen is invoked. A straightforward
approach to repair this vulnerability might involve adding a
null check before the dereference. In fact, we observed that
PATCHAGENT attempted a similar solution. However, after
inserting the check for info.message, the sanitizer raises a
different error, indicating that this repair strategy is not feasi-
ble. Through manual analysis of the vulnerability, we found
that the bug was caused by an incorrect error handling method.
When the program encounters malicious input, an error may
be raised during the initialization process. The same error
handling logic is then used to manage it (line 1), intending to
report the error and release resources. However, different in-
ternal exceptions indicate different resource states. Therefore,
to properly repair the error, it is necessary to examine all sites

Project Lang Source LoC #Vulns #Test

assimp C++ OSS-Fuzz 347.0K 3 474
c-blosc C OSS-Fuzz 88.8K 2 1643
c-blosc2 C++ OSS-Fuzz 117.1K 7 1284
h3 C OSS-Fuzz 17.2K 1 124
hoextdown C OSS-Fuzz 7.1K 1 83
hostap C OSS-Fuzz 438.0K 4 19
htslib C OSS-Fuzz 66.5K 1 159
hunspell C++ OSS-Fuzz 83.9K 11 128
irssi C OSS-Fuzz 64.4K 3 5
krb5 C OSS-Fuzz 301.6K 1 125
libplist C OSS-Fuzz 12.1K 3 34
libsndfile C OSS-Fuzz 56.4K 5 141
libtpms C OSS-Fuzz 115.0K 1 6
libxml2 C OSS-Fuzz 200.4K 10 3272
lz4 C OSS-Fuzz 18.6K 2 22
md4c C OSS-Fuzz 8.0K 4 24
openexr C++ OSS-Fuzz 227.8K 3 111
sleuthkit C OSS-Fuzz 196.2K 5 2
wasm3 C OSS-Fuzz 22.8K 8 35062
zstd C OSS-Fuzz 93.4K 5 28

gpac C Huntr 743.7K 32 711
libmobi C Huntr 19.1K 5 12
mruby C Huntr 62.2K 10 61
radare2 C Huntr 841.3K 20 858
yasm C Huntr 132.1K 3 44

binutils C ExtractFix 666.8K 2 20
coreutils C ExtractFix 86.1K 4 573
jasper C ExtractFix 44.7K 2 16
libjpeg C ExtractFix 46.9K 4 530
libtiff C ExtractFix 85.9K 11 74
libxml2 C ExtractFix 200.4K 5 3272

Table 8: Evaluation Dataset. The LoC column shows the
lines of code for each project, the #Vuln column displays the
number of vulnerabilities for the corresponding project, and
the #Test column indicates the number of functional tests for
each project.

where the error was raised. Given the complexity of this task,
it is understandable that PATCHAGENT was unable to patch
this vulnerability at this stage.

CVE-2022-1286. This bug is a heap overflow vulnerabil-
ity discovered in the mruby project, which PATCHAGENT
was unable to repair using any of its models. The primary
challenge in addressing this case is the project’s extensive
use of indirect calls. If the target of an indirect call does not
appear in the stack trace, it becomes difficult for LLMs to
determine the correct target without additional runtime infor-
mation. Listing 4 illustrates such an example, specifically in
Line 5. This indirect invocation requires dynamic knowledge
of the program’s current state rather than relying solely on
static information. Unfortunately, the root cause of this vul-
nerability does not appear in the stack trace and is the target
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https://github.com/assimp/assimp/pull/5764
https://github.com/assimp/assimp/pull/5765
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https://github.com/seladb/PcapPlusPlus/pull/1678
https://github.com/seladb/PcapPlusPlus/pull/1680


System Prompt

Your task is to patch the bug in the program as identified
by the sanitizer report. Access the buggy codebase and the
corresponding sanitizer report highlighting various issues.
......
Begin by reviewing the sanitizer report to identify specific
problems, such as null pointer dereferences, buffer over-
flows, or use-after-free. Then, delve into the codebase to
locate the exact code sections where these issues occur.
......
After identifying solutions, modify the code accordingly,
ensuring adherence to code best practices. Test your patches
thoroughly to confirm resolution of issues without introduc-
ing new ones.
......

User Prompt

I will send you the sanitizer report for our program. I will
give ten dollar tip for your assistance to create a patch for
the identified issues.
......
Now I want to patch the {program}, the tag is {tag}, here is
the asan report {report}. The report provides the stack trace
of the program. You can use the stack trace to identify a fix
point for the bug.
......
You can use the ‘viewcode‘ tool to identify the parameters
of the function in the stack trace. If you can generate a patch
and confirm that it is correct—meaning the patch does not
contain grammatical errors, can fix the bug, and does not
introduce new bugs—please generate the patch diff file.
......
{counterexamples}

Figure 5: System and User Prompt of PATCHAGENT.

of an indirect call, while the language server of PATCHAGENT
can only provide static information. Although PATCHAGENT
successfully analyzed the code at the call site of the root cause
function, it could not proceed with further analysis due to the
lack of runtime information. Consequently, we believe that
dynamic information is crucial for vulnerability repair and
will consider it in future work.

A.2 Github Pull Requests
Table 6 summarizes the 10 pull requests (PRs) we submitted
across 4 projects to address real-world vulnerabilities, includ-
ing 7 cases of heap overflows, 1 case of stack overflow, 1
case of use after free, and 1 case of null dereference. Among
these, 7 PRs were successfully merged, while the remaining
3 are still under review. The table provides details such as
the project name, PR ID, the type of bug targeted, and the

current status, demonstrating the practical impact of our tool
in identifying and resolving critical vulnerabilities in widely
used software.

A.3 Dataset
The dataset covers 30 projects as shown in Table 8. Each
case is accompanied by a reproduce script and a functional
test script. The table also shows the lines of code (LoC) and
the number of functional tests for each project. To better
understand the complexity of vulnerabilities in the dataset,
we collected statistics on the lines of code within the functions
present in the crash stack traces for each case, referring to
these as the related lines of code (RLOC). The distribution
of RLOC is show in Table 7a. It is important to note that the
vulnerability is not necessarily confined to these specific lines;
it may also involve functions not appearing in the stack trace.
Our motivating example in §3 illustrates such a scenario. Also,
we collect the distribution of backtrace depth at the crash site
and instruction number of trace, which are shown in Table 7b
and Table 7c, respectively.

A.4 Prompt
The system prompt and user prompt of PATCHAGENT are
shown in Figure 5.
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